Разложение на множители онлайн
Разложить некоторое выражение на множители означает представить его в виде произведения нескольких элементов. Поясним вышесказанное на конкретном примере. Пусть нам необходимо разложить на множители выражение:
Вычтем и прибавим слагаемое :
Вынесем за скобки множитель и приведём подобные слагаемые:
Прибавим и вычтем слагаемое :
Вынесем за скобки множитель и приведём подобные слагаемые:
Наконец, выносим за скобки множитель :
Теперь, нам остаётся только вынести за скобки множитель :
Задача разложения на множители часто возникает при решении уравнений. Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha способен разложить на множители практически любые выражения.
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Выделение квадрата двучлена и разложение на множители квадратного трехчлена.
Т.е. задачи сводятся к нахождению чисел \( p, q \) и \( n, m \)
Программа не только даёт ответ задачи, но и отображает процесс решения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.
В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5x +1/7x^2
Результат: \( 3\frac<1> <3>— 5\frac<6> <5>x + \frac<1><7>x^2 \)
При вводе выражения можно использовать скобки. В этом случае при решении введённое выражение сначала упрощается.
Например: 1/2(x-1)(x+1)-(5x-10&1/2)
Разложение на множители
см. также Деление многочленов уголком (показаны все шаги деления столбиком)
Полезным при изучении правил разложения на множители будут формулы сокращенного умножения, с помощью которых будет ясно, как раскрывать скобки с квадратом:
- (a+b) 2 = (a+b)(a+b) = a 2 +2ab+b 2
- (a-b) 2 = (a-b)(a-b) = a 2 -2ab+b 2
- (a+b)(a-b) = a 2 — b 2
- a 3 +b 3 = (a+b)(a 2 -ab+b 2 )
- a 3 -b 3 = (a-b)(a 2 +ab+b 2 )
- (a+b) 3 = (a+b)(a+b) 2 = a 3 +3a 2 b + 3ab 2 +b 3
- (a-b) 3 = (a-b)(a-b) 2 = a 3 -3a 2 b + 3ab 2 -b 3
http://www.math-solution.ru/math-task/quadr-to-mul
http://math.semestr.ru/math/factor.php