1 системы линейных уравнений слау эквивалентные системы элементарные преобразования слау их свойства

Эквивалентность СЛАУ при элементарных преобразованиях

Определения

Система m линейных уравнений с n неизвестными(или, линейная система) в линейной алгебре — это система уравнений вида

a11x1 + a12x2 + … + a1nxn = b1,(1)
a21x1 + a22x2 + … + a2nxn = b2,
. . . . . . . . . . . . . . . . . .
am1x1 + am2x2 + … + amnxn = bm.

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все ее уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у нее нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1 (1) , c2 (1) , …, cn (1) и c1 (2) , c2 (2) , …, cn (2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1 (1) = c1 (2) , c2 (1) = c2 (2) , …, cn (1) = cn (2) .

Совместная система вида (1) называется определенной, если она имеет единственное решение; если же у нее есть хотя бы два различных решения, то она называется неопределенной. Если уравнений больше, чем неизвестных, она называется переопределённой.

Матричная форма Править

Система линейных уравнений может быть представлена в матричной форме как:

или, согласно правилу перемножения матриц,

Методы решения системы (1) Править

Прямые методы Править

§ Метод прогонки — Для трехдиагональных матриц

Приближенные методы Править

§ Метод Якоби (метод итераций)

Метод Крамера (Крамера правило) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причем для таких уравнений решение существует и единственно).

Описание метода

Для системы линейных уравнений с неизвестными (над произвольным полем) (число уравнений совпадает с числом переменных).

с определителем матрицы системы , отличным от нуля, решение записывается в виде:

,

.

(i-й столбец матрицы системы заменяется столбцом свободных членов).

Рангом матрицы A называется наибольший из порядков миноров матрицы A , отличных от нуля. Ранг нулевой матрицы считается равным нулю.

Алгоритм вычисления ранга матрицы:

  • матрица приводится к ступенчатому с помощью элементарных преобразований;
  • количество ненулевых строк в полученной матрице будет равно рангу первоначальной матрицы.

Свойства ранга матрицы:

  • ранг матрицы не превосходит меньшего из ее размеров;
  • ранг матрицы равен нулю тогда и только тогда, когда матрица нулевая;
  • ранг матрицы не изменится, если из нее вычеркнуть все нулевые строки и столбцы;
  • ранг матрицы не изменится при ее транспонировании;
  • элементарные преобразования матрицы не меняют ее ранга

Элементарные преобразования матрицы.

Элементарные преобразования матрицы — это такие преобразования матрицы, в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений, которую представляет эта матрица.

Элементарные преобразования используются в методе Гаусса для приведения матрицы к треугольному или ступенчатому виду.

Определение

Элементарными преобразованиями строк называют:

§ перестановка местами любых двух строк матрицы;

§ умножение любой строки матрицы на константу , ;

§ прибавление к любой строке матрицы другой строки, умноженной на константу , .

Аналогично определяются элементарные преобразования столбцов.

Элементарные преобразования обратимы.

Обозначение указывает на то, что матрица может быть получена из путём элементарных преобразований (или наоборот).

Свойства

Инвариантность ранга при элементарных преобразованиях

Теорема (об инвариантности ранга при элементарных преобразованиях). Если , то .

Эквивалентность СЛАУ при элементарных преобразованиях

Назовём элементарными преобразованиями над системой линейных алгебраических уравнений:

§ умножение уравнения на ненулевую константу;

§ сложение одного уравнения с другим, умноженным на некоторую константу.

Т.е. элементарные преобразования над её расширенной матрицей. Тогда справедливо следующее утверждение:

Теорема (об эквивалентности систем уравнений при элементарных преобразованиях). Система линейных алгебраических уравнений, полученная путём элементарных преобразований над исходной системой, эквивалентна ей.

Напомним, что две системы называются эквивалентными, если множества их решений совпадают.

02. Элементарные преобразования системы линейных уравнений

Определение 5. Элементарными преобразованиями системы линейных уравнений называются ее следующие преобразования:

1) перестановка любых двух уравнений местами;

2) умножение обеих частей одного уравнения на любое число ;

3) прибавление к обеим частям одного уравнения соответствующих частей другого уравнения, умноженных на любое число k ;

(при этом все остальные уравнения остаются неизменными).

Нулевым уравнением называем уравнение следующего вида:

.

Теорема 1. Любая конечная последовательность элементарных преобразований и преобразование вычеркивание нулевого уравнения переводит одну систему линейных уравнений в равносильную ей другую систему линейных уравнений.

Доказательство. В силу свойства 4 предыдущего пункта достаточно доказать теорему для каждого преобразования отдельно.

1. При перестановке уравнений в системе местами сами уравнения неизменяются, поэтому по определению полученная система равносильная первоначальной.

2. В силу первой части доказательства достаточно доказать утверждение для первого уравнения. Умножим первое уравнение системы (1) на число , получим систему

(2)

Пусть решение системы (1) . Тогда числа удовлетворяют всем уравнениям системы (1). Так как все уравнения системы (2) кроме первого совпадают с уравнениями системы (1), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (1), то имеет место верное числовое равенство:

. (3)

Умножая его на число K, получим верное числовое равенство:

, (4)

Т. о. устанавливаем, что решение системы (2).

Обратно, если решение системы (2), то числа удовлетворяют всем уравнениям системы (2). Так как все уравнения системы (1) кроме первого совпадают с уравнениями системы (2), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (2), то справедливо числовое равенство (4). Разделив обе его части на число ,получим числовое равенство (3) и доказываем, что решение системы (1).

Отсюда по определению 4 система (1) равносильна системе (2).

3. В силу первой части доказательства достаточно доказать утверждение для первого и второго уравнения системы. Прибавим к обеим частям первому уравнению системы соответствующие части второго умноженные на число K , получим систему

(5)

Пусть решение системы (1) . Тогда числа удовлетворяют всем уравнениям системы (1). Так как все уравнения системы (5) кроме первого совпадают с уравнениями системы (1), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (1), то имеют место верные числовые равенства:

, (6)

. (7)

Прибавляя почленно к первому равенству второе, умноженное на число K получим верное числовое равенство:

. (8)

Обратно, если решение системы (5), то числа удовлетворяют всем уравнениям системы (5). Так как все уравнения системы (1) кроме первого совпадают с уравнениями системы (5), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (5), то справедливо числовое равенство (8). Вычитая из обеих его частей соответствующие части равенства (7) умноженные на число K получим числовое равенство (6).

Отсюда по определению 4 система (1) равносильна системе (5).

4. Так как нулевому уравнению удовлетворяет любой упорядоченный набор из n чисел, то при вычеркивании нулевого уравнения в системе получим систему равносильную исходной.

Система линейных алгебраических уравнений

В данной публикации мы рассмотрим определение системы линейных алгебраических уравнений (СЛАУ), как она выглядит, какие виды бывают, а также как ее представить в матричной форме, в том числе расширенной.

Определение системы линейных уравнений

Система линейных алгебраических уравнений (или сокращенно “СЛАУ”) – это система, которая в общем виде выглядит так:

Индексы коэффициентов ( aij ) формируются следующим образом:

  • i – номер линейного уравнения;
  • j – номер переменной, к которой относится коэффициент.

Решение СЛАУ – такие числа c1, c2,…, cn , при постановке которых вместо x1, x2,…, xn , все уравнения системы превратятся в тождества.

Виды СЛАУ

  1. Однородная – все свободные члены системы равны нулю ( b1 = b2 = … = bm = 0 ).

В зависимости от количества решений, СЛАУ может быть:

  1. Совместная – имеет хотя бы одно решение. При этом если оно единственное, система называется определенной, если решений несколько – неопределенной.

    СЛАУ выше является совместной, т.к. есть хотя бы одно решение: , y = 3 .
  2. Несовместная – система не имеет решений.

    Правые части уравнений одинаковые, а левые – нет. Таким образом, решений нет.

Матричная форма записи системы

СЛАУ можно представить в матричной форме:

  • A – матрица, которая образована коэффициентами при неизвестных:
  • X – столбец переменных:
  • B – столбец свободных членов:

Пример
Представим систему уравнений ниже в матричном виде:

Пользуясь формами выше, составляем основную матрицу с коэффициентами, столбцы с неизвестными и свободными членами.

Полная запись заданной системы уравнений в матричном виде:

Расширенная матрица СЛАУ

Если к матрице системы A добавить справа столбец свободных членов B , разделив данные вертикальной чертой, то получится расширенная матрица СЛАУ.

Для примера выше получается так:

– обозначение расширенной матрицы.


источники:

http://matica.org.ua/metodichki-i-knigi-po-matematike/algebra-i-geometriia-tolstikov-a-v/02-elementarnye-preobrazovaniia-sistemy-lineinykh-uravnenii

http://microexcel.ru/slau/