10 идеальный газ основное уравнение молекулярно кинетической теории идеального газа

10 идеальный газ основное уравнение молекулярно кинетической теории идеального газа

Идеальный газ — это просто!

Идеальный газ

Идеальный газ — это физическая модель газа, взаимодействие между молекулами которого пренебрежительно мало.
Понятие «идеальный газ» вводится для математического описания поведения газов.
Реальные разреженные газы ведут себя как идеальный газ!

Свойства идеального газа:
— взаимодействие между молекулами пренебрежительно мало
— расстояние между молекулами много больше размеров молекул
— молекулы — это упругие шары
— отталкивание молекул возможно только при соударении
— движение молекул — по законам Ньютона
— давление газа на стенки сосуда — за счет ударов молекул газа

Скорость молекул газа

В теории газов скорость молекул принято определять через среднее значение квадрата скорости молекул.
Хотя скорости различных молекул сильно отличаются друг от друга, но среднее значение квадрата скорости молекул есть величина постоянная.

Формула для расчета среднего значения квадрата скорости молекул газа:

где
n — число молекул в газе
v — модули скоростей отдельных молекул в газе

В теории газов часто используется понятие кинетической энергии молекул.
Используя среднее значение квадрата скорости молекул, получаем формулу для определения средней кинетической энергии молекул:

Основное уравнение МКТ газа

Основное уравнение МКТ связывает микропараметры частиц (массу молекулы, среднюю кинетическую энергию молекул, средний квадрат скорости молекул) с макропараметрами газа (р — давление, V — объем, Т — температура).

Давление газа на стенки сосуда пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

Ниже приведены различные выражения для основного уравнения МКТ:

где
р — давление газа на стенки сосуда(Па)
n — концентрация молекул, т.е. число молекул в единице объема ( 1/м 3 )
— масса молекулы (кг)
— средний квадрат скорости молекул (м 2 /с 2 )
ρ — плотность газа (кг/м 3 )
— средняя кинетическая энергия молекул (Дж)

Давление идеального газа на стенки сосуда зависит от концентрации молекул и пропорционально средней кинетической энергии молекул.

Дополнительные расчетные формулы по теме

Формула для расчета концентрации молекул:

где
N — число молекул газа
V — объем газа (м 3 )

Формула для расчета плотности газа:

где
mo — масса молекулы (кг)
n — концентрация молекул (1/м 3 )

Молекулярная физика. Термодинамика — Класс!ная физика

Основное уравнение МКТ идеального газа

теория по физике 🧲 молекулярная физика, МКТ, газовые законы

Идеальный газ — газ, удовлетворяющий трем условиям:

  • Молекулы — материальные точки.
  • Потенциальная энергия взаимодействия молекул пренебрежительно мала.
  • Столкновения между молекулами являются абсолютно упругими.

Реальный газ с малой плотностью можно считать идеальным газом.

Измерение температуры

Температуру можно измерять по шкале Цельсия и шкале Кельвина. По шкале Цельсия за нуль принимается температура, при которой происходит плавление льда. По шкале Кельвина за нуль принимается абсолютный нуль — температура, при котором давление идеального газа равно нулю, и его объем тоже равен нулю.

Обозначение температуры

  1. По шкале Цельсия — t. Единица измерения — 1 градус Цельсия (1 o C).
  2. По шкале Кельвина — T. Единица измерения — 1 Кельвин (1 К).

Цена деления обеих шкал составляет 1 градус. Поэтому изменение температуры в градусах Цельсия равно изменению температуры в Кельвинах:

При решении задач в МКТ используют значения температуры по шкале Кельвина. Если в условиях задачи температура задается в градусах Цельсия, нужно их перевести в Кельвины. Это можно сделать по формуле:

Если особо важна точность, следует использовать более точную формулу:

Пример №1. Температура воды равна o C. Определить температуру воды в Кельвинах.

T = t + 273 = 2 + 273 = 275 (К)

Основное уравнение МКТ идеального газа

Давление идеального газа обусловлено беспорядочным движением молекул, которые сталкиваются друг с другом и со стенками сосуда. Основное уравнение МКТ идеального газа связывает давление и другие макропараметры (объем, температуру и массу) с микропараметрами (массой молекул, скоростью молекул и кинетической энергией).

Основное уравнение МКТ

Давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

p = 2 3 . . n − E k

p — давление идеального газа, n — концентрация молекул газа, − E k — средняя кинетическая энергия поступательного движения молекул.

Выражая физические величины друг через друга, можно получить следующие способы записи основного уравнения МКТ идеального газа:

p = 1 3 . . m 0 n − v 2

m 0 — масса одной молекулы газа;

n — концентрация молекул газа;

− v 2 — среднее значение квадрата скорости молекул газа.

Среднее значение квадрата скорости не следует путать со среднеквадратичной скоростью v, которая равна корню из среднего значения квадрата скорости:

p = 1 3 . . ρ − v 2

ρ — плотность газа

k — постоянная Больцмана (k = 1,38∙10 –3 Дж/кг)

T — температура газа по шкале Кельвина

Пример №2. Во сколько раз уменьшится давление идеального одноатомного газа, если среднюю кинетическую энергию теплового движения молекул и концентрацию уменьшить в 2 раза?

Согласно основному уравнению МКТ идеального газа, давление прямо пропорционально произведению средней кинетической энергии теплового движения молекул и концентрации его молекул. Следовательно, если каждая из этих величин уменьшится в 2 раза, то давление уменьшится в 4 раза:

Следствия из основного уравнения МКТ идеального газа

Через основное уравнение МКТ идеального газа можно выразить скорость движения молекул (частиц газа):

v = √ 3 k T m 0 . . = √ 3 R T M . .

R — универсальная газовая постоянная, равная произведения постоянной Авогадро на постоянную Больцмана:

R = N A k = 8 , 31 Д ж / К · м о л ь

Температура — мера кинетической энергии молекул идеального газа:

Полная энергия поступательного движения молекул газа определяется формулой:

Пример №3. При уменьшении абсолютной температуры на 600 К средняя кинетическая энергия теплового движения молекул неона уменьшилась в 4 раза. Какова начальная температура газа?

Запишем формулу, связывающую температуру со средней кинетической энергией теплового движения молекул, для обоих случаев, с учетом что:

Составим систему уравнений:

На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

Алгоритм решения

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

ν R = p 1 V 1 T 1 . . = p 2 V 2 T 2 . .

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Первоначальное давление газа в сосуде равнялось р1. Увеличив объём сосуда, концентрацию молекул газа уменьшили в 3 раза, и одновременно в 2 раза увеличили среднюю энергию хаотичного движения молекул газа. В результате этого давление р2 газа в сосуде стало равным

Основное уравнение молекулярно-кинетической теории газов

Средняя оценка: 4.6

Всего получено оценок: 105.

Средняя оценка: 4.6

Всего получено оценок: 105.

Основное уравнение молекулярно-кинетической теории газов связывает макроскопический параметр газа — давление — с параметрами молекул. Рассмотрим кратко вывод этого уравнения.

Основные положения МКТ

Молекулярно-кинетическая теория (МКТ) описывает тепловые явления на основе положений о строении вещества. Таких положений три:

  • все вещества состоит из мельчайших частиц-молекул;
  • молекулы находятся в постоянном хаотическом движении;
  • частицы могут взаимодействовать друг с другом.

В зависимости от скорости движения молекул и от вида их взаимодействий, вещества находятся в различном температурном и агрегатном состоянии.

Давление идеального газа

Одним из объектов, который хорошо описывается с помощью МКТ, является идеальный газ.

В идеальном газе молекулы представляют собой материальные точки, которые хаотически движутся в предоставленном объеме, сталкиваясь друг с другом и со стенками сосуда. Столкновения абсолютно упруги, и других взаимодействий между молекулами нет.

Рис. 2. Идеальный газ.

Учитывая основные положения МКТ газов, становится возможным связать величину давления с параметрами его молекул. В упрощенном виде ход рассуждений будет таким.

Для определения давления учтем, что, если средняя скорость молекулы равна $v_<ср>$, то импульс, переданный ею при абсолютно упругом ударе о стенку сосуда, равен:

Если концентрация молекул равна $n$, то количество ударов молекул о стенку сосуда площадью $S$ за время $t$ равно:

А полный импульс силы, подействовавший на стенку, равен:

Из двух последних формул найдем силу:

Поскольку в ударах о стенку сосуда участвовали лишь молекулы, имеющие составляющую скорости, перпендикулярную стенке и направленную в ее сторону, то в среднем импульс передавала только одна шестая молекул (в трехмерном пространстве молекулы могут двигаться в шести направлениях). Следовательно, среднее значение силы в шесть раз меньше полученного значения:

Поделив полученное значение силы на площадь, получим создаваемое ею давление:

Полученная формула — это и есть основное уравнение молекулярно-кинетической теории газов.

Иногда основное уравнение МКТ записывается с использованием средней кинетической энергии молекулы. Средняя кинетическая энергия равна:

Выражая среднеквадратичную скорость из этой формулы и подставляя ее в предыдущую, получим:

Давление идеального газа пропорционально концентрации и средней кинетической энергии молекулы.

Что мы узнали?

Основное уравнение молекулярно-кинетической теории идеального газа связывает макроскопический параметр газа — давление — с параметрами его молекул: с концентрацией, массой и средней скоростью. Поскольку масса и средняя скорость молекулы однозначно определяют среднюю энергию молекулы, основное уравнение МКТ можно записать с помощью средней энергии.


источники:

http://spadilo.ru/osnovnoe-uravnenie-mkt-idealnogo-gaza/

http://obrazovaka.ru/fizika/osnovnoe-uravnenie-molekulyarno-kineticheskoy-teorii-gazov.html