10 уравнение плоскости и прямой в пространстве интеграция математических и экономических знаний

Уравнение плоскости и прямой в пространстве. Интеграция математических и экономических знаний

ID (номер) заказа
2859321

В настоящее время в современной экономике необычайно большое
число будущих экономистов, нуждается в серьезной математической
подготовке, которая давала бы возможность математическими методами
исследовать широкий круг новых проблем, применять современную
вычислительную технику, использовать теоретические достижения в
практике. Это требует базовой подготовки на основе, высокого уровня
общего образования в области фундаментальных наук. Для этого, по
меньшей мере, необходимо получение студентами отчетливого
представления о том, что такое математика, в чем заключается
математический подход к изучению явлений реального мира, как его
можно применять и что они могут дать.
Однако, приходится констатировать, что математическая экономика
не занимает должного места в специальных экономических курсах. К
сожалению, для многих преподавателей специальных экономических
дисциплин в силу специфики используемого аппарата даже существующие
математические методы и модели не доступны.
Целью работы является обобщение и систематизация теоретического
материала по теме «Уравнение прямой и плоскости в пространстве» в
рамках исследуемой проблемы.
В процессе выполнения работы решаются следующие задачи:
 изучение темы исследование;
 применение математических знаний в экономических
исследованиях.

Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

Конспект урока Уравнение прямой и плоскости

КГУ «Индустриально-технологический колледж»

Поурочный план № 147-148

Уравнение плоскости и прямой в пространстве. Контрольная работа 12.

Наименование дисциплины: Математика
Подготовил педагог: Тихоненко С.А.
Дата урока: 22.04.2021 года

1. Общие сведения

1.1 Курс, группы: первый, 9СЛ20, 9МК20, 9ОП20

1.2 Тип занятия: комбинированный/ дистанционный

1.3 Межпредметные связи: физика, черчение.

Познакомить учащихся с понятием уравнения плоскости и её особыми случаями задания; Выработать практические навыки по изучаемой теме при решении задач.

познакомить учащихся с понятием уравнение плоскости и алгоритмами составления уравнения плоскости;

дать представление об особых случаях уравнения;

сформировать знания по изучаемой теме

выработать умение применять полученные знания при решении конкретных практических задач.

продолжить формирование навыков самостоятельной работы с информацией;

учить анализировать информацию, обобщать, делать выводы;

развивать умение работать в группах.

воспитывать уважительное отношение к мнению других, умение слушать и слышать окружающих;

способствовать формированию и развитию культуры учащихся, повышению уровня познавательного интереса к предмету;

продолжить работу по формированию положительной мотивации к учебной деятельности;

формировать позитивную психологическую атмосферу в группе.

2.2 Результаты обучения:

1) Усвоить определение вектора и действий с векторами в пространстве.

2.3 Критерии оценки:

1) Выполняет сложение и вычитание векторов, умножение вектора на число;

2)Находит скалярное произведение векторов.

3. Оснащение занятия

3.1 Учебно-методическое оснащение: дидактические материалы, справочно-инструктивные таблицы, карточки с заданиями, оценочные листы .

Справочная литература : А.Е.Әбылқасымова, В.Е. Корчевский, З.Ә. Жумагулова, Алгебра и начала анализа: Учебник для 10 классов естественно- математического направления обшеобразовательных школ.1-2 часть. Алматы: Мектеп, 2019г.

3.2 Техническое оснащение, материалы, ИКТ: мультимедийный проектор, ноутбук, экран.

рованные этапы урока, время

Деятельность, запланированная на уроке

Проверка домашнего задания.

Устный опрос по теме «Координаты вектора в пространстве».

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0 (3.1)

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости.

Вектор n (A, B, C ), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. D = 0, Ax+By+Cz = 0 — плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 — плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 — плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 — плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

2) двумя своими точками M1(x1, y1, z1) и M2(x2, y2, z2), тогда прямая, через них проходящая, задается уравнениями:

= ; (3.3)

3) точкой M1(x1, y1, z1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой.

Вектор a называется направляющим вектором прямой.

Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t:

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой:

x = mz + a, y = nz + b. (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [n1, n2], где n1(A1, B1, C1) и n2(A2, B2, C2) — нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x1, y = y1; прямая параллельна оси Oz.

Презентация к уроку.

Пример 1. . Cоставьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.

Решение. По условию задачи вектор ОА(1,-1,3) является нормальным вектором плоскости, тогда ее уравнение можно записать в виде
x-y+3z+D=0. Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: 1-(-1)+3×3+D = 0 , D = -11. Итак, x-y+3z-11=0.

1. Написать конспект.

2. Ответить на вопросы теста.

5.Рефлексия по занятию

— Понравился ли вам урок?

— Что было трудным для вас?

— Что вам больше понравилось?

6. Домашнее задание

Ответить на вопросы теста.

Тест по теме «Векторы и координаты в пространстве»

1. Даны точки А(4; 5; 1) и В(0; 9; -8). Чему равна длина отрезка АВ?

a ) b) c) d) e)

2. Укажите пару коллинеарных векторов:

a ) и b ) и c ) и

d ) и e ) и

3. Могут ли векторы быть коллинеарными, но не равными?

a ) да b ) нет c ) не достаточно данных

4. Вектор ортогонален вектору . Укажите координаты вектора :

a ) b ) c )

d ) e )

5. Вычислить координаты середины отрезка АВ, если А(-10; 2; 3) и В(0; 16; -7).

a ) b ) c ) d ) e )

6. Чему равен модуль вектора , если M N

a) b) c) d) e)

7. При каком положительном n векторы и ортогональны?

a ) -2; 1 b ) 1 c ) 1; 2 d ) 2 e ) -2

8. Вычислить скалярное произведение векторов и :

a ) -14 b ) 4 c ) -4 d ) 10 e ) -10

9. Вычислить угол между векторами и :

a ) 45˚ b ) 60˚ c ) 30˚ d ) 90˚ e ) 120˚

10. Даны векторы и . Вычислить координаты вектора .

a ) b ) c ) d ) e )

Уравнение плоскости и прямой в пространстве. Интеграция математических и экономических знаний

Автор: Инна • Май 21, 2018 • Контрольная работа • 2,803 Слов (12 Страниц) • 1,178 Просмотры

ГлаваI.Уравнение плоскости и прямой в пространстве………………….5

1.1.Точка пересечения прямой с плоскостью……………………………….…5

2.1.Различные случаи положения прямой в пространстве………………….7

Глава II. Интеграция математических и экономических знаний………10

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ. 20

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением, которое называется уравнением плоскости.

Вектор n (A, B, C ), ортогональной плоскости, называется нормальным вектором плоскости. В уравнении коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения

1. D = 0, Ax+By+Cz = 0 — плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 — плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 — плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 — плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей, т.е. системой уравнений:

A1 x + B1 y + C1 z + D1 = 0, A2 x + B2 y + C2 z + D2 = 0;

2) двумя своими точками M1(x1, y1, z1) и M2(x2, y2, z2), тогда прямая, через них проходящая, задается уравнениями:

3) точкой M1(x1, y1, z1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

Уравнения называются каноническими уравнениями прямой.

Вектор a называется направляющим вектором прямой.

Параметрические уравнения прямой получим, приравняв каждое из отношений параметру t:

x = x1 +mt, y = y1 + nt, z = z1 + рt.

Решая систему как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой:

x = mz + a, y = nz + b.

Глава I. Уравнение плоскости и прямой в пространстве

1.1.Точка пересечения прямой с плоскостью

Пусть плоскость Q задана уравнением общего типа: Ax+By+Cz+D=0, а прямая L в параметрическом виде: x=x1+mt, y=y1+nt, z=z1+pt, тогда чтобы найти точку пересечения прямой L и плоскости Q, нужно найти значение параметра t, при котором точка прямой будет лежать на плоскости. Подставив значение x, y, z, в уравнение плоскости и выразив t, получим

Значение t будет единственным, если прямая и плоскость не параллельны.

Условия параллельности и перпендикулярности прямой и плоскости

Рассмотрим прямую L: и плоскость α: Ax+By+Cz+D=0.

Прямая L и плоскость α:

а) перпендикулярны друг другу тогда и только тогда, когда направляющий вектор прямой и нормальный вектор плоскости коллинеарны, т. е.

б) параллельны друг другу тогда и только тогда, когда векторы и перпендикулярны, т. е.

и Am + Bn + Ср = 0.

Прямая линия в пространстве бесконечна, поэтому задавать ее удобнее отрезком. Из школьного курса Евклидовой геометрии известна аксиома, «через две точки в пространстве можно провести прямую и, притом, только одну». Следовательно, на эпюре прямая может быть задана двумя фронтальными и двумя горизонтальными проекциями точек. Но так как


источники:

http://znanio.ru/media/konspekt-uroka-uravnenie-pryamoj-i-ploskosti-2708631

http://ru.essays.club/%D0%A2%D0%BE%D1%87%D0%BD%D1%8B%D0%B5-%D0%BD%D0%B0%D1%83%D0%BA%D0%B8/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5-%D0%BF%D0%BB%D0%BE%D1%81%D0%BA%D0%BE%D1%81%D1%82%D0%B8-%D0%B8-%D0%BF%D1%80%D1%8F%D0%BC%D0%BE%D0%B9-69895.html