12 системы n линейных уравнений с n неизвестными

12 системы n линейных уравнений с n неизвестными

Системой m линейных уравнений с n неизвестными называется система вида

где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

  1. Система может иметь единственное решение.
  2. Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
  3. И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Рассмотрим способы нахождения решений системы.

МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче AX=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A: . Поскольку A -1 A = E и EX = X, то получаем решение матричного уравнения в виде X = A -1 B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B.

Примеры. Решить системы уравнений.

Найдем матрицу обратную матрице A.

,

Таким образом, x = 3, y = – 1.

Решите матричное уравнение: XA+B=C, где

Выразим искомую матрицу X из заданного уравнения.

Найдем матрицу А -1 .

Решите матричное уравнение AX+B=C, где

Из уравнения получаем .

Следовательно,

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

.

Далее рассмотрим коэффициенты при x2:

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений

Решите систему уравнений при различных значениях параметра p:

Система имеет единственное решение, если Δ ≠ 0.

. Поэтому .

  1. При
  2. При p = 30 получаем систему уравнений которая не имеет решений.
  3. При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений x=y,y Î R.

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.

Вернувшись к системе уравнений, будем иметь

Выпишем расширенную матрицу системы и сведем ее к треугольному виду.

Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.

Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.

Вернемся к системе уравнений.

Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.

Таким образом, система имеет бесконечное множество решений.

Системы из n линейных уравнений с n неизвестными. Метод Гаусса решения систем линейных уравнений

1. Линейная алгебра

2. Системы из n линейных уравнений с n неизвестными

3. Системы из n линейных уравнений с n неизвестными

4. Системы из n линейных уравнений с n неизвестными

5. Метод Гаусса решения систем линейных уравнений

6. Метод Гаусса решения систем линейных уравнений

7. Метод Гаусса решения систем линейных уравнений

1 строке
7 прибавим
2 К3первой

2 3 1 7
строку,
3 1 вторую
3 1 2 3
2
3
на (-2)
умноженную
6
9 1Ко второй
8
6строке
9 ( 5)
1 8
прибавим
первую
строку,
вычтем
Из третьей строки
0 19 13на (-2),
25

умноженную
вторую строку
строке
0 23 16 30
0 К третьей
4 первую
3 строку,
5
прибавим
умноженную на (-3).

8. Метод Гаусса решения систем линейных уравнений

0 1 2
0 4 3 5
x 1 y 2
1 8 6 9
: 5
0 1 2 0

строке
0 К0третьей
прибавим
5
5
вторую строку,
умноженную на 4
Вторую строку умножим
на (-1), третью
строку
Восстановим
систему:
разделим на 5
1 8 6 9
0 1 2 0
0 0
1
1
x 8 y 6 z 9
y 2z 0
z 1
( 1)
x 9 8 y 6 z
y 2z 2
z 1
z 1
x 9 16 6 1
y 2
z 1

9. Ранг матрицы

10. Ранг матрицы

11. Ранг матрицы

1 7 6
1 3 2 ( 2)
0 5 4

0 10 8
r( A ) 2
1 3 2
0 5 4
0 0 0

12. Исследование систем линейных уравнений

13. Исследование систем линейных уравнений

1 1 3 2
1 1 1 2 ( 3)
1 1 1 0 V

14. Исследование систем линейных уравнений

0 1 1
0 1 1
r(B) r( A ) 2
1
0
0
0
1 1 2
0 1 1
0 0 0
0 0 0
система совместна
n 3 — число неизвестных
r(B) n система неопределенна
n r 3 2 1 — число свободных переменных
Восстановим систему:
Пусть x 2 t.
x1 1 t
x 1 2 t x 3 1 t
x1 t x 3 2
x2 t
x3 1
x3 1
x 1
3

15. Исследование систем линейных уравнений

1 2 4 1 1 2 4 1

0 3 3 3
0 3 3 3
0 3 3
0 0
2
0
5
r(B) 3
r( A ) 2
r(B) r( A ) система несовместна

16. Однородные системы линейных уравнений

17. Однородные системы линейных уравнений

18. Однородные системы линейных уравнений

19. Однородные системы линейных уравнений

2 1 4
3 2 1 6
x1 x 2 5 x 3 7 x 4 0
2×1 x 2 4 x 3 x 4 0
3 x 2x x 6 x 0
2
3
4
1
1 1 5 7

0 1 14 15
0 1 14 15
1 1 5 7
0 1 14 15
( 2)
1 1 5 7 ( 1)

0 1 14 15
0 0
0
0
r( A ) 2
n 4
n r 4 2 2 — число свободных переменных

Курсовая работа: «Решение систем n линейных уравнений с n неизвестными».

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 300 дидактических материалов для школьного и домашнего обучения

1. Решение систем n линейных уравнений с n неизвестными

1.1. Основные понятия

Системой m линейных уравнений с n неизвестными называется система уравнений вида (1):

Систему линейных уравнений (1) можно записать в матричной форме

Здесь A – матрица системы; X – матрица- столбец неизвестных; B – матрица-столбец свободных членов.

С системой линейных уравнений (1) связана ещё одна матрица ,

полученная из матриц A добавлением столбца B свободных членов, и называемая расширенной матрицей системы (1):

Если в системе линейных уравнений (1) все свободные члены равны нулю (т. е. B – нулевая матрица-столбец), то она называется однородной, в противном случае – неоднородной.

Решением системы линейных уравнение называется упорядоченная совокупность n чисел α1,α2,…,αn, которая при подстановке в систему обращает каждое уравнение в тождество.

Если система линейных уравнений имеет хотя бы одно решение, то она называется совместной, в противном случае – несовместной.

Две системы линейных уравнений называются равносильными (эквивалентными), если равны множества их решений.

1.2. Решение системы методом обратной матрицы

Пусть дана система n линейных уравнений с n неизвестными, у которой матрица A системы – невырожденная, т. е. | A |≠0. Запишем систему в матричной форме: AX=B .

Так как | A |≠0, то существует матрица А -1 . Умножим слева обе части матричного уравнения на А -1 : А -1 АХ = А -1 В или

Равенство (4) – матричная форма записи решения системы (1).

Для того чтобы найти элементы матрицы X неизвестных, нужно найти обратную матрицу А -1 и умножить её на столбец свободных членов B .

Решить систему уравнений матричным методом

Запишем систему в матричном виде:

Выясним, является ли матрица A системы невырожденной:

Следовательно, матрица A является невырожденной. Поэтому существует обратная матрица А -1 ; воспользуемся формулой:

Найдём произведение А -1 В :

Матрица неизвестных равна:

Ответ можно записать также в виде .

1.3. Решение системы методом Крамера

Система n линейных уравнений с n неизвестными называется крамеровской, если матрица A системы является невырожденной (т. е. | A |≠0).

Теорема (Крамера). Крамеровская система n линейных уравнений с n неизвестными имеет единственное решение, которое находится по формулам (5) :

где | A | − определитель матрицы системы, | Aij | − определитель матрицы, получаемый из матрицы A заменой j -го столбца столбцом свободных членов B .

Заметим, что способ решения системы линейных уравнений, основанный на формулах Крамера, называют методом или правилом Крамера.

Решить систему методом Крамера.

Данная система линейных уравнений является крамеровской (так как | A |≠0). Согласно формулам (5) имеем:

Замечание. Метод обратной матрицы и метод Крамера решения систем линейных уравнений становятся трудоёмкими при n ≥4.

1.4. Решение системы уравнений методом Гаусса

Методом Гаусса (методом последовательного исключения неизвестных) можно решить любую систему линейных уравнений. Процесс решения системы по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) систему с помощью элементарных преобразований приводят к ступенчатому виду (её расширенная матрица − ступенчатая). На втором этапе (обратный ход) из ступенчатой системы последовательно, начиная с последнего уравнения, определяются значения неизвестных.

Эквивалентными (равносильными) преобразованиями системы линейных уравнений называются следующие действия:

1) перестановка местами двух уравнений системы,

2) умножение любого уравнения на число, отличное от нуля,

3) прибавление к одному из уравнений другого уравнения, умноженного на любое число,

4) удаление (вписывание) уравнения вида 0 x 1+0 x 2+…+0 xn =0.

На практике проделывают эквивалентные преобразования не над системой, а над её расширенной матрицей.

Проиллюстрируем применение метода Гаусса.

Методом Гаусса решить систему уравнений:

Выпишем расширенную матрицу и с помощью эквивалентных преобразований приведем её к ступенчатому виду:

1-ю строку прибавим к 3-й, а затем умножим её на (−1) и прибавим к 4-й.

В дальнейшем 1-ю строку не трогаем, работаем со 2-й строкой.

Прибавим 2-ю строку к 3-й, а затем прибавим утроенную 2-ю строку к 4-й. Далее первые две строки не трогаем, работаем с 3-й.

Умножим 3-ю строку на 7 и прибавим к 4-й .

Таким образом, в результате проведённых преобразовании пришли к следующей системе линейных уравнений, равносильной данной:


источники:

http://ppt-online.org/798387

http://infourok.ru/kursovaya-rabota-reshenie-sistem-n-lineynih-uravneniy-s-n-neizvestnimi-3235586.html