13 а решите уравнение б укажите все корни этого уравнения принадлежащие промежутку

Задание 13 ЕГЭ-2021. Решение уравнений

1. а) Решите уравнение

б) Найдите все его корни на отрезке

Решим второе уравнение;

б) Отберем корни на отрезке с помощью единичной окружности.

Отметим на единичной окружности отрезок и найдем серии решений;

Видим, что указанному отрезку принадлежат точки

2. а) Решите уравнение

б) Найдите все корни на отрезке

По формуле синуса двойного угла,

Вынесем за скобки

а так как получим:

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю.

б) Найдем корни на промежутке

1) Рассмотрим первую серию решений:

значит, из первой серии решений в указанный промежуток попадают 2 корня и

2) Рассмотрим вторую серию решений:

разделим все части неравенства на 2

Значит, из второй серии решений получаем ещё один корень

3) Рассмотрим третью серию решений:

из третьей серии получаем четвертый корень

3. а) Решить уравнение

б) Найти корни на

Применим формулы приведения:

Применим формулу синуса двойного угла:

уравнение примет вид:

б) Найдем корни на отрезке с помощью двойных неравенств.

1) Серия решений

k = 1, значит, на данном промежутке из этой серии находится только 1 корень

2) Серия решений

значит, из этой серии на данном промежутке корней нет.

3) Серия решений

значит, из этой серии на данном промежутке лежат 2 корня

Таким образом, на заданном промежутке мы нашли 3 корня:

4. (Резервный день)

а) Решите уравнение

б) Укажите корни этого уравнения, принадлежащие отрезку

По формуле приведения,

б) Найдем корни на отрезке с помощью единичной окружности. Видим, что указанному отрезку принадлежат точки

Это полезно

Узнаете, чем отличаются официально-деловой, публицистический, научный, художественный и разговорный стили.

Наш онлайн-курс по Физике

Все темы ЕГЭ с нуля

Можно не только читать, но и смотреть новые объяснения и разборы на нашем YouTube канале!

Пожалуйста, подпишитесь на канал и нажмите колокольчик, чтобы не пропустить новые видео

Задавайте свои вопросы в комментариях и оставляйте задачи, которые вы хотите, чтобы мы разобрали.

Мы обязательно ответим!

Мы заметили, что Вы регулярно пользуетесь нашими материалами для подготовки по физике.

Результат будет выше, если готовиться по отработанной методике.

У нас есть онлайн-курсы как для абитуриентов, так и для преподавателей.

Задания по теме «Тригонометрические уравнения»

Открытый банк заданий по теме тригонометрические уравнения. Задания C1 из ЕГЭ по математике (профильный уровень)

Задание №1179

Условие

а) Решите уравнение 2(\sin x-\cos x)=tgx-1.

б) Укажите корни этого уравнения, принадлежащие промежутку \left[ \frac<3\pi >2;\,3\pi \right].

Решение

а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 \sin x-2 \cos x-tg x=0. Учитывая, что \cos x \neq 0, слагаемое 2 \sin x можно заменить на 2 tg x \cos x, получим уравнение 1+2 tg x \cos x-2 \cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 \cos x)=0.

1) 1-tg x=0, tg x=1, x=\frac\pi 4+\pi n, n \in \mathbb Z;

2) 1-2 \cos x=0, \cos x=\frac12, x=\pm \frac\pi 3+2\pi n, n \in \mathbb Z.

б) С помощью числовой окружности отберём корни, принадлежащие промежутку \left[ \frac<3\pi >2;\, 3\pi \right].

x_1=\frac\pi 4+2\pi =\frac<9\pi >4,

x_2=\frac\pi 3+2\pi =\frac<7\pi >3,

x_3=-\frac\pi 3+2\pi =\frac<5\pi >3.

Ответ

а) \frac\pi 4+\pi n, \pm\frac\pi 3+2\pi n, n \in \mathbb Z;

б) \frac<5\pi >3, \frac<7\pi >3, \frac<9\pi >4.

Задание №1178

Условие

а) Решите уравнение (2\sin ^24x-3\cos 4x)\cdot \sqrt =0.

б) Укажите корни этого уравнения, принадлежащие промежутку \left( 0;\,\frac<3\pi >2\right] ;

Решение

а) ОДЗ: \begin tgx\geqslant 0\\x\neq \frac\pi 2+\pi k,k \in \mathbb Z. \end

Исходное уравнение на ОДЗ равносильно совокупности уравнений

\left[\!\!\begin 2 \sin ^2 4x-3 \cos 4x=0,\\tg x=0. \end\right.

Решим первое уравнение. Для этого сделаем замену \cos 4x=t, t \in [-1; 1]. Тогда \sin^24x=1-t^2. Получим:

t_1=\frac12, t_2=-2, t_2\notin [-1; 1].

4x=\pm \frac\pi 3+2\pi n,

x=\pm \frac\pi <12>+\frac<\pi n>2, n \in \mathbb Z.

Решим второе уравнение.

tg x=0,\, x=\pi k, k \in \mathbb Z.

При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.

Получим: x=\pi k, k \in \mathbb Z; x=\frac\pi <12>+\pi n, n \in \mathbb Z; x=\frac<5\pi ><12>+\pi m, m \in \mathbb Z.

б) Найдём корни, принадлежащие промежутку \left( 0;\,\frac<3\pi >2\right].

Ответ

а) \pi k, k \in \mathbb Z; \frac\pi <12>+\pi n, n \in \mathbb Z; \frac<5\pi ><12>+\pi m, m \in \mathbb Z.

Задание №1177

Условие

а) Решите уравнение: \cos ^2x+\cos ^2\frac\pi 6=\cos ^22x+\sin ^2\frac\pi 3;

б) Укажите все корни, принадлежащие промежутку \left( \frac<7\pi >2;\,\frac<9\pi >2\right].

Решение

а) Так как \sin \frac\pi 3=\cos \frac\pi 6, то \sin ^2\frac\pi 3=\cos ^2\frac\pi 6, значит, заданное уравнение равносильно уравнению \cos^2x=\cos ^22x, которое, в свою очередь, равносильно уравнению \cos^2x-\cos ^2 2x=0.

Но \cos ^2x-\cos ^22x= (\cos x-\cos 2x)\cdot (\cos x+\cos 2x) и

\cos 2x=2 \cos ^2 x-1, поэтому уравнение примет вид

(\cos x-(2 \cos ^2 x-1))\,\cdot (\cos x+(2 \cos ^2 x-1))=0,

(2 \cos ^2 x-\cos x-1)\,\cdot (2 \cos ^2 x+\cos x-1)=0.

Тогда либо 2 \cos ^2 x-\cos x-1=0, либо 2 \cos ^2 x+\cos x-1=0.

Решая первое уравнение как квадратное уравнение относительно \cos x, получаем:

(\cos x)_<1,2>=\frac<1\pm\sqrt 9>4=\frac<1\pm3>4. Поэтому либо \cos x=1, либо \cos x=-\frac12. Если \cos x=1, то x=2k\pi , k \in \mathbb Z. Если \cos x=-\frac12, то x=\pm \frac<2\pi >3+2s\pi , s \in \mathbb Z.

Аналогично, решая второе уравнение, получаем либо \cos x=-1, либо \cos x=\frac12. Если \cos x=-1, то корни x=\pi +2m\pi , m \in \mathbb Z. Если \cos x=\frac12, то x=\pm \frac\pi 3+2n\pi , n \in \mathbb Z.

Объединим полученные решения:

x=m\pi , m \in \mathbb Z; x=\pm \frac\pi 3 +s\pi , s \in \mathbb Z.

б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

Получим: x_1 =\frac<11\pi >3, x_2=4\pi , x_3 =\frac<13\pi >3.

Ответ

а) m\pi, m \in \mathbb Z; \pm \frac\pi 3 +s\pi , s \in \mathbb Z;

б) \frac<11\pi >3, 4\pi , \frac<13\pi >3.

Задание №1176

Условие

а) Решите уравнение 10\cos ^2\frac x2=\frac<11+5ctg\left( \dfrac<3\pi >2-x\right) ><1+tgx>.

б) Укажите корни этого уравнения, принадлежащие интервалу \left( -2\pi ; -\frac<3\pi >2\right).

Решение

а) 1. Согласно формуле приведения, ctg\left( \frac<3\pi >2-x\right) =tgx. Областью определения уравнения будут такие значения x , что \cos x \neq 0 и tg x \neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 \cos ^2 \frac x2=1+\cos x. Получим уравнение: 5(1+\cos x) =\frac<11+5tgx><1+tgx>.

Заметим, что \frac<11+5tgx><1+tgx>= \frac<5(1+tgx)+6><1+tgx>= 5+\frac<6><1+tgx>, поэтому уравнение принимает вид: 5+5 \cos x=5 +\frac<6><1+tgx>. Отсюда \cos x =\frac<\dfrac65><1+tgx>, \cos x+\sin x =\frac65.

2. Преобразуем \sin x+\cos x по формуле приведения и формуле суммы косинусов: \sin x=\cos \left(\frac\pi 2-x\right), \cos x+\sin x= \cos x+\cos \left(\frac\pi 2-x\right)= 2\cos \frac\pi 4\cos \left(x-\frac\pi 4\right)= \sqrt 2\cos \left( x-\frac\pi 4\right) = \frac65.

Отсюда \cos \left(x-\frac\pi 4\right) =\frac<3\sqrt 2>5. Значит, x-\frac\pi 4= arc\cos \frac<3\sqrt 2>5+2\pi k, k \in \mathbb Z,

или x-\frac\pi 4= -arc\cos \frac<3\sqrt 2>5+2\pi t, t \in \mathbb Z.

Поэтому x=\frac\pi 4+arc\cos \frac<3\sqrt 2>5+2\pi k,k \in \mathbb Z,

или x =\frac\pi 4-arc\cos \frac<3\sqrt 2>5+2\pi t,t \in \mathbb Z.

Найденные значения x принадлежат области определения.

б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=\frac\pi 4+arccos \frac<3\sqrt 2>5 и b=\frac\pi 4-arccos \frac<3\sqrt 2>5.

1. Докажем вспомогательное неравенство:

Заметим также, что \left( \frac<3\sqrt 2>5\right) ^2=\frac<18> <25>значит \frac<3\sqrt 2>5

2. Из неравенств (1) по свойству арккосинуса получаем:

Отсюда \frac\pi 4+0

Аналогично, -\frac\pi 4

0=\frac\pi 4-\frac\pi 4 \frac\pi 4

При k=-1 и t=-1 получаем корни уравнения a-2\pi и b-2\pi.

\Bigg( a-2\pi =-\frac74\pi +arccos \frac<3\sqrt 2>5,\, b-2\pi =-\frac74\pi -arccos \frac<3\sqrt 2>5\Bigg). При этом -2\pi

-2\pi Значит, эти корни принадлежат заданному промежутку \left( -2\pi , -\frac<3\pi >2\right).

При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

Действительно, если k\geqslant 1 и t\geqslant 1, то корни больше 2\pi. Если k\leqslant -2 и t\leqslant -2, то корни меньше -\frac<7\pi >2.

Ответ

а) \frac\pi4\pm arccos\frac<3\sqrt2>5+2\pi k, k\in\mathbb Z;

б) -\frac<7\pi>4\pm arccos\frac<3\sqrt2>5.

Задание №1175

Условие

а) Решите уравнение \sin \left( \frac\pi 2+x\right) =\sin (-2x).

б) Найдите все корни этого уравнения, принадлежащие промежутку [0; \pi ];

Решение

а) Преобразуем уравнение:

\cos x+2 \sin x \cos x=0,

x =\frac\pi 2+\pi n, n \in \mathbb Z;

x=(-1)^\cdot \frac\pi 6+\pi k, k \in \mathbb Z.

б) Корни, принадлежащие отрезку [0; \pi ], найдём с помощью единичной окружности.

Указанному промежутку принадлежит единственное число \frac\pi 2.

Ответ

а) \frac\pi 2+\pi n, n \in \mathbb Z; (-1)^\cdot \frac\pi 6+\pi k, k \in \mathbb Z;

б) \frac\pi 2.

Задание №1174

Условие

б) Найдите все корни этого уравнения, принадлежащие отрезку \left[ -\frac<3\pi ><2>; -\frac<\pi >2 \right].

Решение

а) Найдём ОДЗ уравнения: \cos 2x \neq -1, \cos (\pi +x) \neq -1; Отсюда ОДЗ: x \neq \frac \pi 2+\pi k,

k \in \mathbb Z, x \neq 2\pi n, n \in \mathbb Z. Заметим, что при \sin x=1, x=\frac \pi 2+2\pi k, k \in \mathbb Z.

Полученное множество значений x не входит в ОДЗ.

Значит, \sin x \neq 1.

Разделим обе части уравнения на множитель (\sin x-1), отличный от нуля. Получим уравнение \frac 1<1+\cos 2x>=\frac 1<1+\cos (\pi +x)>, или уравнение 1+\cos 2x=1+\cos (\pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 \cos ^2 x=1-\cos x. Это уравнение с помощью замены \cos x=t, где -1 \leqslant t \leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=\frac12. Возвращаясь к переменной x , получим \cos x = \frac12 или \cos x=-1, откуда x=\frac \pi 3+2\pi m, m \in \mathbb Z, x=-\frac \pi 3+2\pi n, n \in \mathbb Z, x=\pi +2\pi k, k \in \mathbb Z.

б) Решим неравенства

1) -\frac<3\pi >2 \leqslant \frac<\pi >3+2\pi m \leqslant -\frac \pi 2 ,

2) -\frac<3\pi >2 \leqslant -\frac \pi 3+2\pi n \leqslant -\frac \pi

3) -\frac<3\pi >2 \leqslant \pi+2\pi k \leqslant -\frac \pi 2 , m, n, k \in \mathbb Z.

1) -\frac<3\pi >2 \leqslant \frac<\pi >3+2\pi m \leqslant -\frac \pi 2 , -\frac32 \leqslant \frac13+2m \leqslant -\frac12 -\frac<11>6 \leqslant 2m \leqslant -\frac56 , -\frac<11> <12>\leqslant m \leqslant -\frac5<12>.

Нет целых чисел, принадлежащих промежутку \left [-\frac<11><12>;-\frac5<12>\right] .

2) -\frac <3\pi>2 \leqslant -\frac<\pi >3+2\pi n \leqslant -\frac<\pi ><2>, -\frac32 \leqslant -\frac13 +2n \leqslant -\frac12 , -\frac76 \leqslant 2n \leqslant -\frac1<6>, -\frac7 <12>\leqslant n \leqslant -\frac1<12>.

Нет целых чисел, принадлежащих промежутку \left[ -\frac7 <12>; -\frac1 <12>\right].

3) -\frac<3\pi >2 \leqslant \pi +2\pi k\leqslant -\frac<\pi >2, -\frac32 \leqslant 1+2k\leqslant -\frac12, -\frac52 \leqslant 2k \leqslant -\frac32, -\frac54 \leqslant k \leqslant -\frac34.

Этому неравенству удовлетворяет k=-1, тогда x=-\pi.

Ответ

а) \frac \pi 3+2\pi m; -\frac \pi 3+2\pi n; \pi +2\pi k, m, n, k \in \mathbb Z;

задание 13

О категории

Тригонометрические уравнения, отбор корней.

Теория (1)

Разбор задания 13 профильного ЕГЭ по Математике

Вообще в задании 13 дают не только тригонометрию, так что на видео также рассмотрены и другие.

Практика (101)

a) tg(Pi+x)cos(2x-Pi/2) = cos(-Pi/3)

а) tg(2Pi+x)cos(Pi/2+2x) = cosPi

а) Решите уравнение tg(Pi-x)cos(3Pi/2 — 2x) = sin 5Pi/6

б) Укажите корни этого уравнения, принадлежащие отрезку [-2Pi; -Pi/2]

а) Решить уравнения сos^2x-cos2x=0,75.
б) Отбор корней на отрезке [2Pi;-Pi/2]

cos2x+sin^2x = 3/4, [Pi; 2,5Pi]

sin(Pi/2+x) = sin2x, [-Pi; Pi/2]

cos2x-5sqrt(2)cosx-5 = 0, [-3Pi; -3Pi/2]

2sin(x+Pi/3)+cos2x = sqrt(3)cosx+1, [-3Pi, -3Pi/2]

а) Найдите корень уравнения sqrt(2)sin^2x = sinx

б) Найдите все корни этого уравнения, удовлетворяющие неравенству cosx

a) Найдите корень уравнения 2cos2x-12cosx+7 = 0

б) Отбор корней на промежутку [-Pi; 5Pi/2] (15)

а) 8*16^(sin^2x) — 2*4^(cos2x) = 63

a) (2cosx+1)(sqrt(-sinx)-1) = 0

а) Ре­ши­те урав­не­ние cos2x+0,5=cos^2x.
б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [-2Pi/-Pi/2]

а) Ре­ши­те урав­не­ние sin2x=sin(Pi/2+x)
б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [-7Pi/2; -5Pi/2]

а) Ре­ши­те урав­не­ние 4cos^3x+3sin(x-Pi/2)=0.
б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [-2Pi;-Pi].

а) Ре­ши­те урав­не­ние sin2x=2sinx-cosx+1
б) Ука­жи­те корни урав­не­ния, при­над­ле­жа­щие от­рез­ку [-2Pi;-Pi/2]

а) Ре­ши­те дан­ное урав­не­ние 2cos^2x+2sin2x=3.
б) Ука­жи­те корни дан­но­го урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку [-3Pi/2; -Pi/2]

а) Решите уравнение cos2x=1-cos(Pi/2-x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-5Pi/2;-Pi)

а) Решите уравнение
(4sin^2x-1)sqrt(64Pi^2-x^2) = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку [-30; -20]

б) Отобрать корни из отрезка [-3Pi; 7Pi]

а)cos2 x +3cos(3π/2+x)-2=0
б)[-5π;-3π]

а) Решите уравнение (9^(sin2x)-3^(2sqrt(2)sinx)) / (sqrt(11sinx)) = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку [7Pi/2; 5Pi]

a) Решите уравнение -cos2x+sqrt(2)cos(Pi/2+x)+1 = 0

б) Отберите корни из данного отрезка [2Pi; 3,5Pi]

б) Укажите корни этого уравнения, принадлежащие отрезку [m][-\frac<9\pi><2>; -3\pi][/m]

a) Решить уравнение 4sin^2x-3sinx*cosx-cos^2x = 0

б) Найти все корни этого уравнения, принадлежащие промежутку [0; Pi/4]

а) Решить уравнение cos4x-cos2x = 0

б) Отобрать корни на промежутке [Pi/2; 2Pi]

а) Решить уравнение log(-cosx)(1-0,5sinx) = 2

б) Отобрать корни на отрезке [14Pi; 16Pi]

б) Найдите корни, принадлежащие отрезку [m][\frac<9\pi><2>; 6\pi][/m]

9^(cosx) + 9^(-cosx) = 10/3

а) Решить уравнение sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1,

б) Отобрать корни на отрезке [-7Pi/2; -2Pi]

а) Решите уравнение tg^2x+5tgx+6=0
б) Найдите корни этого уравнения, принадлежащие промежутку [–2π;–π/2]

решите уравнение 4cos^2 x + 8sin (3П/2 — x) — 5 = 0
и укажите корни этого уравнения принадлежащие отрезку [-7П/2; -2П]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
2sin^3 (x + 3П/2) + cosx = 0
[5П/2; 4П]

решите уравнение и укажите корни этого уравнения принадлежащие отрезку
2√2sin (x + П/3) + 2cos^2 x = √6cosx + 2
[-3П; -3П/2]

решите уравнение и укажите корни этого уравнения принадлежащие отрезку
√2sin (x + П/4) + cos(2x) = sinx — 1
[7П/2; 5П]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
2sin (2x + П/6) + cosx = √3 sin(2x) — 1
[4П; 11П/2]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
2cos^3 x = sin (П/2 — x)
[-4П; -5П/2]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
8sin^2 x — 2√3cos (П/2 — x) — 9 = 0
[-5П/2; -П]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
cos2x + √2sin (П/2 + x) + 1 = 0
[2П; 7П/2]

а) Решите уравнение (6/5)^(cos3x)+(5/6)^(cos3x) = 2,

б) Укажите корни этого уравнения, принадлежащие промежутку [4Pi; 9Pi/2)

(sinx+cosx)sqrt(2) = tgx+ctgx, [-Pi; Pi/2]

а) Решите уравнение log(1,75)(2-sin^2x-sinx-cos2x) = 1

б) Отобрать корни на отрезке [-7Pi/2; — 2Pi]

а) Решите уравнение tg(2Pi-x)cos(3Pi/2 + 2x) = sin(-Pi/2)

б) Укажите корни этого уравнения, принадлежащие [2Pi; 7Pi/2]

а) Решите [m]log^2_ <2x>(4x^3) -2 = log_ <2x>(4x)[/m]

б) Отбор корней на промежутке [m] [\frac<1><2>; \frac<1><\sqrt[10]<2>>] [/m]

а) Решите уравнение 8sinx+4cos^2x = 7;

б) Найдите корни на отрезке [-3Pi/2; -Pi/2]

a) Решите уравнения cos^2(x/2)-sin^2(x/2) = sin((Pi/2)-2x)

б) Укажите корни уравнения, принадлежащие отрезку [Pi; 5Pi/2]

[block]а) Решить уравнение (cos^2x+sqrt(3))/(sqrt(3)cos^2x) = (sqrt(3)+4)/(2sqrt(3)cosx)[/block]

б) Найдите корни на промежутке [-1;3]

Решите уравнение sin2x=cos(pi/2-x)
Найти все корни на промежутка [-Pi;0]

Решить уравнения 2sin^2x-5sinxcosx+2cos^2x=0
Выбрать корни принадлежащие [Pi/2;3Pi/2]

Решите уравнение cos4x-cos2x=0
Укажите корни, принадлежащие отрезку [Pi/2;2Pi]

2cos^2x+2sqrt(2)cos(п/2-x)+1=0;
Корни на промежутке [3п/2;3п]

1) Решите уравнение 2sin^2x — 3sqrt(2)sin (3Pi/2) — 4 = 0

2) Найдите корни, принадлежащие отрезку [Pi; 5Pi/6]

Решите неравенство 2sin^2x-2√2cos+1=0
корни на промежутке [5п/4 4п]

2sin²x+3√2cos(3π/2+x) +2 =0

a) Решите уравнение sqrt(x^(2)-2x+1) + sqrt(x^(2)+2x+1) = 2

б) Отбор корней на промежутке [1;2]

Найти корень уравнения 3+2sin2x=tgx+ctgx, принадлежащий интервалу (50°;90°)

а) Решить уравнение [m]3cos\frac<4>cos\frac<2>sin\frac <4>= \frac<1-ctgx><1-ctg^2x>[/m]

б) Укажите корни, принадлежащие интервалу (-2Pi; -3Pi/2)

3log^2(8)(sinx) — 5log(8)(sinx) — 2
[-7π/2; 2π]

Решить уравнение
(tg ^2 x -2 tgx-3)*log5(-2sinx)
Отберите корни на отрезке [П/2;3П]

а) Решите уравнение (3ctg^2x+4ctgx)/(5cos^2x–4cosx)=0
б) отберите корни на промежутке [5п/2;5п]
Пожалуйста с отбором корней подробнее

а) Решите уравнение (log^2_(2)(sinx)+log2(sinx)) / (2cosx+sqrt(3))=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [0; 3π/2]

ctgx — 2cos(П/2 — 2x) = 0
Условие [ — П; П/2 ]

а) Решите уравнение 2/(tg^2x+1) = 3sin(3Pi+2x)

б) Найдите все корни уравнения, принадлежащие отрезку [-3Pi/2; Pi]

а) Решите уравнение (sin2x-2cosx)*log2(log(1/3)(x+5)) = 0 [Л13]

б) Укажите корни этого уравнения, принадлежащие промежутку (-3Pi/2; 0)

а) Решите уравнение 20^(cosx)=4^(cosx)⋅5^(−sinx).

б) Найдите все корни этого уравнения, принадлежащие отрезку [−9π/2;−3π].

а) Решите уравнение sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1

б) Отбор корней на отрезке [-7Pi/2; -2Pi]

а) Решить 2*9^x-11*6^x+3*4^(x+1) = 0,

б) Отбор корней: [0, 3]

а) Решить уравнение 8^(2sqrt(3)cosx) = 64^(sin2x),

б) Отбор корней на отрезке [2Pi; 7Pi/2]

а) Решить уравнение sqrt(x^3-4x^2-10x+29) = 3-x,

б) Отбор корней [-sqrt(3); sqrt(30)]

(1+tg^2x)cos(Pi/2+2x) = 2/sqrt(3), [-3Pi/2; Pi]

tg(Pi+x)cos(2x-Pi/2)=cos(-Pi/3), [7Pi; 17Pi/2]

tg(Pi-x)cos((3Pi/2) — 2x) = sin(5Pi/6), [-2Pi; -Pi/2]

sinx=sqrt((1-cosx)/2), [2Pi; 7Pi/2] [v8-13]

Решите уравнение 2sinx*sin3x=cos2x, и найдите корни из промежутка (0;П)

а) log(sinx) (1+cos2x+cos4x) = 0

б) Укажите решение уравнения принадлежащее отрезку [0; Pi]

а) Решите уравнение 2ctg^(2)x = 3/sinx

б) Отобрать корни [0, 2π)

а) Решить уравнение tg^2x+1 = 1/cos((3Pi/2)+2x)

б) Отобрать корни на отрезке [-Pi/2; 5Pi/2]

а) Решить уравнение 2sin(x+Pi/6)-2sqrt(3)cos^2x = cosx-2sqrt(3)

б) Отобрать корни на отрезке [-5Pi/2; -Pi]

а) Решить уравнение (1+2sinx)sinx = sin2x+sin(Pi/2-x)

б) Отбор корней на отрезке [-3Pi/2; 0]

sqrt(2cos^2x-sqrt(2))+sqrt(2)sinx = 0, [-7Pi; -11Pi/2] (л13)

а) Решить уравнение 2cos^2x = sin(Pi/2-x)

б) Отбор корней на отрезке [5Pi/2; 4Pi]

а) Решить уравнение cos4x-cos2x = 0

б) Отобрать корней на отрезке [Pi/2; 2Pi]

а) Решить уравнение sqrt(3)sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1

б) Отобрать корни на отрезке [-3Pi; -3Pi/2]

a) Решите уравнение sqrt(4cos2x-2sin2x)=2cosx
б) Укажите корни этого уравнения, принадлежащие отрезку [-13Pi/6; -Pi/2]

а) Решить уравнение: (sin(Pi-x))/(2sin^2(x/2)) = 2cos^2(x/2)

б) Сделать отбор корней на отрезке [7Pi/2;5Pi]

а) Решите уравнение 2/(tg^2x+1)=3sin(3Pi+2x).

б) Найдите все корни уравнения, принадлежащие отрезку [-3Pi/2 ; Pi].

а) Решить уравнение 9*81^(cosx)-28*9^(cosx)+3 = 0,

б) Отбор корней на отрезке [5Pi/2; 4Pi]

а) Решите уравнение: 4cos2x=2cos(Pi/2-x)+1

б) Выполните отбор корней: [-3Pi/2; Pi/2]

а) Решить уравнение sin2x / sin(3Pi/2-x) = sqrt(2)

б) Отбор корней на отрезке [2Pi; 7Pi/2]

а) Решите уравнение (25^(sin2x)-5^(2sqrt(2)sinx))/sqrt(17sinx) = 0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [3Pi/2; 4Pi]

а) Решить уравнение 16^(sin(2x+Pi/4)) =4^(sqrt(2)(sin2x+tgx*ctgx))*16^(sinx)

б) Отобрать корни на отрезке [3Pi/2; 3Pi]

а) Решите уравнение: sqrt(2)sin(2x-Pi/4)-sqrt(3)sinx = sin2x+1

б) Выполнить отбор корней: [-3Pi/2; 0]

а) Решить уравнение cos4x+sin2x = 0,

б) Выполнить отбор корней на промежутке 90°

а) Решить уравнение sin2x=2sinx-cosx+1

б) Выполнить отбор корней на отрезке [-2Pi;-Pi/2]

а) Решить уравнение:36^(2cosx+1)+16*4^(2cosx-1)=24*12^(2cosx)

б) Выполнить отбор корней: [-Pi/2;0]

a) Решите уравнение sin(2x+Pi/6) = cosx+cos(x+Pi/6)sinx

б) Определите, какие из его корней принадлежать отрезку [-5Pi; -7Pi/2]

а) Решить уравнение: 2cos(x-3Pi/2)+sqrt(2)cosx = sin2x-sqrt(2)

б) Укажите корни этого уравнения, принадлежащие отрезку [-5Pi;-7Pi/2]

а) Решите уравнение 3-2cos^2x+3sin(x-Pi) = 0

б) Найдите корни этого уравнения, принадлежащие промежутку [7Pi/2; 11Pi/2)

а) Решите уравнение 9*3^(2cosx)-10sqrt(3)*3^(cosx)+3 = 0

б) Укажите корни этого уравнения, принадлежащие отрезку [3Pi/2; 4Pi]

а) Решите уравнение cos^2x+4cos^23x+4cos3xcosx-6cosx-12cos3x=-9

б) Найдите решения уравнения, принадлежащие промежутку [2015Pi; 2017Pi]

а) Решите уравнение cos^25x+2cos5xsin(x-Pi/10)+1=0

б) Найдите решения уравнения, принадлежащие промежутку [2016Pi; 2017Pi].


источники:

http://academyege.ru/theme/trigonometricheskie-uravneniya-3.html

http://reshimvse.com/category.php?name=ege_math_task_13