13x 3y 2 решить уравнение в целых числах

Основные методы решения уравнений в целых числах

Введение

Существует множество математических задач, ответами к которым служат одно или несколько целых чисел. В качестве примера можно привести четыре классические задачи, решаемые в целых числах – задача о взвешивании, задача о разбиении числа, задача о размене и задача о четырёх квадратах. Стоит отметить, что, несмотря на достаточно простую формулировку этих задач, решаются они весьма сложно, с применением аппарата математического анализа и комбинаторики. Идеи решения первых двух задач принадлежат швейцарскому математику Леонарду Эйлеру (1707–1783). Однако наиболее часто можно встретить задачи, в которых предлагается решить уравнение в целых (или в натуральных) числах. Некоторые из таких уравнений довольно легко решаются методом подбора, но при этом возникает серьёзная проблема – необходимо доказать, что все решения данного уравнения исчерпываются подобранными (то есть решений, отличных от подобранных, не существует). Для этого могут потребоваться самые разнообразные приёмы, как стандартные, так и искусственные. Анализ дополнительной математической литературы показывает, что подобные задания достаточно часто встречаются в олимпиадах по математике разных лет и различных уровней, а также в задании 19 ЕГЭ по математике (профильный уровень). В то же время в школьном курсе математики данная тема практически не рассматривается, поэтому школьники, участвуя в математических олимпиадах или сдавая профильный ЕГЭ по математике, обычно сталкиваются со значительными трудностями при выполнении подобного рода заданий. В связи с этим целесообразно выделить систему основных методов решения уравнений в целых числах, тем более что в изученной математической литературе этот вопрос явно не оговаривается. Описанная проблема определила цель данной работы: выделить основные методы решения уравнений в целых числах. Для достижения поставленной цели необходимо было решить следующие задачи:

1) Проанализировать олимпиадные материалы, а также материалы профильного ЕГЭ по математике;

2) Обозначить методы решения уравнений в целых числах и выделить преобладающие;

3) Полученные результаты проиллюстрировать примерами;

4) Составить несколько тренировочных заданий по данной теме;

5) Применяя разработанные задания, определить степень готовности учащихся девятых классов МБОУ СОШ №59 к решению подобного рода задач и сделать практические выводы.

Основная часть

Анализ разнообразной математической литературы показывает, что среди методов решения уравнений в целых числах в качестве основных можно выделить следующие:

  1. Представление уравнения в виде произведения нескольких множителей, равного некоторому целому числу;
  2. Представление уравнения в виде суммы квадратов нескольких слагаемых, равной некоторому целому числу;
  3. Использование свойств делимости, факториалов и точных квадратов;
  4. Использование Малой и Великой теорем Ферма;
  5. Метод бесконечного спуска;
  6. Выражение одной неизвестной через другую;
  7. Решение уравнения как квадратного относительно одной из неизвестных;
  8. Рассмотрение остатков от деления обеих частей уравнения на некоторое число.

Сразу же нужно оговорить, что мы понимаем под основными методами решения уравнений. Основными будем называть наиболее часто применяющиеся методы, что, конечно, не исключает возможности периодического применения новых «неожиданных» приёмов. Кроме того, причём в подавляющем большинстве случаев, применяют их различные сочетания, то есть проводят комбинирование нескольких методов.
В качестве примера сочетания методов рассмотрим уравнение, предлагавшееся на ЕГЭ по математике в 2013 году (задание С6).

Задача. Решить в натуральных числах уравнение n! + 5n + 13 = k 2 .

Решение. Заметим, что оканчивается нулём при n > 4. Далее, при любых n ∈ N оканчивается либо цифрой 0, либо цифрой 5. Следовательно, при n > 4 левая часть уравнения оканчивается либо цифрой 3, либо цифрой 8. Но она же равна точному квадрату, который не может оканчиваться этими цифрами. Поэтому нужно перебрать только четыре варианта: n = 1, n = 2, n = 3, n = 4.

Значит, уравнение имеет единственное натуральное решение n = 2, k = 5.

В этой задаче использовались свойства точных квадратов, свойства факториалов, и остатки от деления обеих частей уравнения на 10.

Теперь приведём комплекс авторских задач.

Задача 1. Решить в целых числах уравнение n 2 — 4y! = 3.

Решение. Сначала перепишем исходное уравнение в виде n 2 = 4y! + 3. Если посмотреть на это соотношение с точки зрения теоремы о делении с остатком, то можно заметить, что точный квадрат, стоящий в левой части уравнения, даёт при делении на 4 остаток 3, что невозможно. Действительно, любое целое число представимо в одном из следующих четырёх видов:

Таким образом, точный квадрат при делении на 4 даёт в остатке либо 0, либо 1. Следовательно, исходное уравнение не имеет решений.

Ключевая идея – применение свойств точных квадратов.

Задача 2. Решить в целых числах уравнение 8z 2 = (t!) 2 + 2.

Решение. Непосредственная проверка показывает, что t = 0 и t = 1 не являются решениями уравнения. Если t > 1, то t! является чётным числом, то есть, оно представимо в виде t! = 2s. В таком случае уравнение можно преобразовать к виду 4z 2 = 2s 2 + 1. Однако, полученное уравнение заведомо не имеет решений, ибо в левой части стоит чётное число, а в правой – нечётное.

Ключевая идея – применение свойств факториалов.

Задача 3. Решить в целых числах уравнение x 2 + y 2 – 2x + 6y + 5 = 0.

Решение. Исходное уравнение можно переписать следующим образом: (x – 1) 2 + (y + 3) 2 = 5.

Из условия следует, что (x – 1), (y + 3) – целые числа. Следовательно, данное уравнение эквивалентно следующей совокупности:

Теперь можно выписать всевозможные целые решения уравнения.

Задача 4. Решить в целых числах уравнение zt + t – 2z = 7.

Решение. Исходное уравнение можно преобразовать к виду (z + 1) (t – 2) = 5. Числа (z + 1), (t – 2) являются целыми, поэтому имеют место следующие варианты:

Итак, уравнение имеет ровно четыре целых решения.

Ключевая идея – представление уравнения в виде произведения, равного целому числу.

Задача 5. Решить в целых числах уравнение n(n + 1) = (2k + 1)‼

Решение. Число (2k + 1)‼ нечётно при всех неотрицательных значениях k согласно определению (при отрицательных k оно вообще не определено). С другой стороны, оно равно числу n(n + 1), которое чётно при всех целых значениях k. Противоречие.

Ключевая идея – использование чётности/нечётности частей уравнения.

Задача 6. Решить в целых числах уравнение xy + x + 2y = 1.

Решение. Путём преобразований уравнение можно свести к следующему:

Данное преобразование не изменило ОДЗ неизвестных, входящих в уравнение, так как подстановка y = –1 в первоначальное уравнение приводит к абсурдному равенству –2 = 1. Согласно условию, x – целое число. Иначе говоря, тоже целое число. Но тогда число обязано быть целым. Дробь является целым числом тогда и только тогда, когда числитель делится на знаменатель. Делители числа 3: 1,3 –1, –3. Следовательно, для неизвестной возможны четыре случая: y = 0, y = 2, y = –2, y = –4. Теперь можно вычислить соответствующие значения неизвестной x. Итак, уравнение имеет ровно четыре целых решения: (–5;0), (–5;2), (1;–2), (1;–4).

Ключевая идея – выражение одной неизвестной через другую.

Задача 7. Решить в целых числах уравнение 5 m = n 2 + 2.

Решение. Если m = 0, то уравнение примет вид n 2 = –1. Оно не имеет целых решений. Если m 0. Тогда правая часть уравнения (как и левая) будет кратна 5. Но в таком случае n 2 при делении на 5 должно давать остаток 3, что невозможно (это доказывается методом перебора остатков, который был изложен при решении задачи 1). Следовательно, данное уравнение не имеет решений в целых числах.

Ключевая идея – нахождение остатков от деления обеих частей уравнения на некоторое натуральное число.

Задача 8. Решить в целых числах уравнение (x!) 4 + (y – 1) 4 = (z + 1) 4 .

Решение. Заметим, что в силу чётности показателей степеней уравнение эквивалентно следующему: (x!) 4 + |y – 1| 4 = |z + 1| 4 . Тогда x!, |y – 1|, |z + 1| – натуральные числа. Однако, согласно Великой теореме Ферма, эти натуральные числа не могут удовлетворять исходному уравнению. Таким образом, уравнение неразрешимо в целых числах.

Ключевая идея – использование Великой теоремы Ферма.

Задача 9. Решить в целых числах уравнение x 2 + 4y 2 = 16xy.

Решение. Из условия задачи следует, что x – чётное число. Тогда x 2 = 4x1 2 . Уравнение преобразуется к виду x1 2 + y 2 = 8x1y. Отсюда вытекает, что числа x1, y имеют одинаковую чётность. Рассмотрим два случая.

1 случай. Пусть x1, y – нечётные числа. Тогда x1 = 2t + 1, y = 2s + 1. Подставляя эти выражения в уравнение, получим:

Выполним соответствующие преобразования:

Сокращая обе части полученного уравнения на 2, получим?

В левой части стоит нечётное число, а в правой – чётное. Противоречие. Значит, 1 случай невозможен.

2 случай. Пусть x1, y – чётные числа. Тогда x1 = 2x2 + 1, y = 2y1. Подставляя эти значения в уравнение, получим:

Таким образом, получилось уравнение, точно такое же, как на предыдущем шаге. Исследуется оно аналогично, поэтому на следующем шаге получим уравнение и т.д. Фактически, проводя эти преобразования, опирающиеся на чётность неизвестных, мы получаем следующие разложения: . Но величины n и k не ограничены, так как на любом шаге (со сколь угодно большим номером) будем получать уравнение, эквивалентное предыдущему. То есть, данный процесс не может прекратиться. Другими словами, числа x, y бесконечно много раз делятся на 2. Но это имеет место, только при условии, что x = y = 0. Итак, уравнение имеет ровно одно целое решение (0; 0).

Ключевая идея – использование метода бесконечного спуска.

Задача 10. Решить в целых числах уравнение 5x 2 – 3xy + y 2 = 4.

Решение. Перепишем данное уравнение в виде 5x 2 – (3x)y + (y 2 – 4) = 0. Его можно рассмотреть как квадратное относительно неизвестной x. Вычислим дискриминант этого уравнения:

Для того чтобы уравнение имело решения, необходимо и достаточно, чтобы , то есть Отсюда имеем следующие возможности для y: y = 0, y = 1, y = –1, y = 2, y = –2.

Итак, уравнение имеет ровно 2 целых решения: (0;2), (0;–2).

Ключевая идея – рассмотрение уравнения как квадратного относительно одной из неизвестных.

Составленные автором задачи были использованы при проведении эксперимента, который состоял в следующем. Всем учащимся девятых классов были предложены разработанные задания с целью выявления уровня подготовки детей по данной теме. Каждому из учеников необходимо было предложить метод нахождения целочисленных решений уравнений. В эксперименте приняли участие 64 ученика. Полученные результаты представлены в таблице 1.

ТАБЛИЦА 1

Количество учащихся, справившихся с заданием (в процентах)

Презентация по математике на тему «Решение уравнения в целых числах»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 300 дидактических материалов для школьного и домашнего обучения

Описание презентации по отдельным слайдам:

Решение уравнений в целых числах Мирошниченко Н.Е. учитель математики МАУ ШИЛИ Г. Калининград

1.Метод прямого перебора Имеются детали массой 8 кг и 3 кг . Сколько необходимо взять тех и других деталей, чтобы получить груз 30 кг? Решение: Пусть х – количество деталей массой 3 кг, а у — количество деталей массой 8 кг. Составим уравнение: 3х + 8у=30 Если х = 1, то 8у =27 , следовательно, у не является натуральным числом Если х =2, то 8у =24 , следовательно, у =3 Если х = 3, то 8у =21 , следовательно, у не является натуральным числом Если х = 4, то 8у =18 , следовательно, у не является натуральным числом Если х =5, то 8у =15 , следовательно, у не является натуральным числом Если х = 6, то 8у =12 , следовательно, у не является натуральным числом Если х = 7, то 8у =9 , следовательно, у не является натуральным числом Если х = 8, то 8·3+8>30 , Ответ: 2 детали по 3 кг и 3 детали по 8 кг.

2.Использование неравенств Решите в натуральных числах уравнение 3x + 6y = 21. Решение. Для уменьшения перебора вариантов рассмотрим неравенства Проведем перебор по неизвестной у. Если y = 1, то x = 5 Если y = 2, то x = 3 Если y = 3, то x = 1. Ответ: (5;1), (3; 2)(;1;3).

3.Использование отношения делимости Решить уравнение в целых числах 13x +16y = 300. Решение. 13x +13y + 3y = 13· 23 +1, 3y −1 = 13(23 − x − y). Отсюда следует, что разность 3y −1 делится на 13. Если 3y −1 = 0, то у не является натуральным числом. Если 3y −1 = 13, то у не является натуральным числом. Если 3y −1 = 26, то y = 9 и x = 12. Если 3y −1 = 39, то у не является натуральным числом. Если 3y −1 = 52, то у не является натуральным числом Если 3y −1 = 65, то y = 22, но16·22 = 352 > 300. Ответ: (12;9)

4. Выделение целой части Решить уравнение 8x + 5y = 39 . Решение. Выразим у из уравнения и выделим целую часть: Отсюда следует, что разность 3x − 4 делится на 5. Если 3x − 4 = 0, то х не является натуральным числом. Если 3x − 4 = 5, то x = 3 и y = 3. Если 3x − 4 = 10, то х не является натуральным числом. Если 3x − 4 = 15, то х не является натуральным числом. Если 3x − 4 = 20, то x = 8, но 8 8 = 64 > 39. Ответ: (3; 3).

5. Метод остатков Решите уравнение 3x − 4y = 1 в целых числах. Решение. Перепишем уравнение в виде 3x = 4y +1. Поскольку левая часть уравнения делится на 3, то должна делиться на 3 и правая часть. Рассмотрим три случая. 1) Если y = 3m, где m Z, то 4y +1 = 12m +1 не делится на 3. 2) Если y = 3m +1, то 4y +1 = 4(3m +1) +1 = 12m + 5 не делится на 3. 3) Если y = 3m + 2, то 4y +1 = 4(3m + 2) +1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, x = 4m + 3. Ответ: x = 4m + 3, y = 3m + 2, где m Z.

6. Метод «спуска» Решите в целых числах уравнение 5x − 7 y = 3. Решение. Выразим из уравнения то неизвестное, коэффициент при котором меньше по модулю: Дробь должна быть равна целому числу. Положим , где z – целое число. Тогда 2y + 3 = 5z. Из последнего уравнения выразим то неизвестное, коэффициент при котором меньше по модулю, и проделаем аналогичные преобразования:

Дробь должна быть целым числом. Обозначим ,где t– целое число. Отсюда z = 2t − 3. Последовательно возвращаемся к неизвестным х и у: y = 3(2t − 3) − t = 5t − 9, x = y + z = 5t − 9 + 2t − 3 = 7t −12. Ответ: x = 7t – 12, y = 5t – 9, где t – целое число

7.Метод последовательного уменьшения коэффициентов по модулю Решить уравнение в целых числах 20х + 3у=10 Решение. Коэффициенты при переменных х и у – взаимно простые числа и свободный член — целое число. Коэффициент при х больше коэффициента при у. Представим его в виде суммы двух натуральных слагаемых так, чтобы первое слагаемое было наибольшим числом, кратным числу 3 ( коэффициенту при у). Получим: 20х + 3у = 10 (18 +2) х +3у=10 18х +2х+3у=10 3(6х+у)+2х=10

Обозначим выражение 6х + у = k. (1) Получим уравнение 3k+2x =10 с переменными k и х. Проведем аналогичные преобразования с полученным уравнением: (2 + 1) k + 2 x =10 2(k + x) + k =10 Обозначим выражение k + х = n (2). Получим уравнение 2 n + k =10 k = 10 – 2n Подставим в равенство (2) вместо k выражение 10 – 2n: 10 – 2n +x = n x = 3n – 10 Мы получили одну из формул решений уравнения 20x – 3y = 10

Чтобы получить вторую формулу, подставим в равенство(1) вместо х выражение +3n -10, а вместо k выражение 10-2n: 6(3n – 10)+y = 10 – 20n y = 70 – 20n Формулы х = 3n – 10; y = 70 – 20n при n = 0, ± 1, ±2; … дают все целочисленные решения уравнения

8 . Использование формул Теорема. Если а и b – взаимно просты и пара — какое-нибудь целочисленное решение уравнения aх + by = c, то все целочисленные решения этого уравнения описываются формулами: , где Доказательство: Пусть пара — какое-нибудь целочисленное решение уравнения ах + by = c , т.е. . Сделаем замену переменных: Тогда в новых переменных уравнение примет вид: . Т.к. а и b – взаимно просты, то уравнение имеет решения, если

Тогда получим Возвращаясь к старым переменным, получаем, что

8 . Использование формул Найти целочисленные решения уравнения 13х = 6у — 19 Решение. Найдем одно целочисленное решение уравнения: , и выполним преобразования Ответ:

9. Использование конечных цепных дробей Решите в целых числах уравнение 127x − 52y +1= 0 Решение. Преобразуем отношение коэффициентов при неизвестных. Прежде всего, выделим целую часть неправильной дроби . Правильную дробь заменим равной ей дробью Тогда получим . Проделаем такие же преобразования с полученной в знаменателе неправильной дробью

Теперь исходная дробь примет вид: . Повторяя те же рассуждения для дроби получим . Выделяя целую часть неправильной дроби , придем к окончательному результату:

Мы получили выражение, которое называется конечной цепной или непрерывной дробью. Отбросив последнее звено этой цепной дроби –одну пятую, превратим получающуюся при этом новую цепную дробь в простую и вычтем ее из исходной дроби : . Итак, Приведем полученное выражение к общему знаменателю и отбросив знаменатель, получим: Из сопоставления полученного равенства с уравнением 127x − 52y +1= 0 следует, что x = 9 , y = 22 будет решением этого уравнения, и согласно теореме все его решения будут содержаться в формулах x = 9 + 52t , y = 22 +127t ,где t Z. Ответ: x = 9 + 52t , y = 22 + 127t , где t Z.

Метод разложения на множители а) вынесение общего множителя за скобки Решить уравнение : х² + 2ху = 4х + 7 Решение: х² + 2ху — 4х = 7, (х + 2у -2)х = 7 Составим четыре системы уравнений: решив которые, получим Ответ: (1; 5), (7; -1), (-1; -1), (-7; 5)

б) применение формул сокращенного умножения Найдите все пары натуральных чисел, разность квадратов которых равна 33. Решение. Запишем условие задачи в виде уравнения (m + n)(m — n) = 33 т.к(m + n)>(m – n) ,то получим две системы уравнений: Ответ: (17; 16), (7; 4),

в) способ группировки. Решить уравнение: xy — 2x + 3y = 16. Решение: х(у – 2) + 3у – 6 = 10 х(у – 2 ) + 3(у – 2) = 10 (х + 3)(у – 2) = 10 получаем восемь систем уравнений: Решив полученные системы уравнений, получим: Решив полученные системы уравнений, получаем: Ответ: (7;3), (-2; 12), (-1;7), (2;4), (-13;1), (-4;-8), (-5;-3), (-8;0).

Ответ: (7; 3), (-2; 12), (-1; 7), (2; 4), (-13; 1), (-4; -8), (-5; -3), (-8; 0)

г) разложение квадратного трехчлена Решить уравнение в целых числах : х² — 5ху+4у²=13 Решение: Решив уравнение х² — 5ху+4у²=0 относительно переменной х , получим . Теперь можно разложить левую часть уравнения на множители. Получаем (х – у)(х – 4у)=13 13 = 1·13=13·1=(-1)·(-13)=(-13)·(-1) Составим четыре системы уравнений: Решив полученные системы уравнений, получим ответ: Ответ: (-3; -4), (3; 4), (17;4), (-17;-4)

д) использование параметра Решите уравнение 2x²− 2xy + 9x + y = 2 в целых числах. Решение. Перепишем уравнение в виде 2x² − (2y − 9)x + y − 2 + a = a и разложим левую часть уравнения на множители как квадратный трехчлен относительно х. Находим дискриминант D = 4y² − 44y + 97 −8a. Очевидно, если 97 −8a =121, то дискриминант будет полным квадратом. При этом a = −3 и Отсюда . Уравнение принимает вид (2x −1)(x − y + 5) =−3. -3=1·(-3)=(-1)·3= 3·(-1)=(-3)·1

Из этого уравнения получим следующие системы уравнений: Решив эти системы, получим: Ответ: (1;9); (0;2); (2;8); (−1;3).

2. Метод решения относительно одной переменной

Выделение целой части Решить уравнение в целых числах: 3xy + 14x + 17y +71= 0 Решение: 3xy+17y=-14x — 71 ; y(3x+17)=-14x-71 , где 3х + 17≠0 Т.к. у должно быть целым числом, то 3у тоже целое число, следовательно, дробь также целое число,и значит 25 делится на (3х+17). Получаем: 3x + 17 = -5→ 3x = -22→ х не является целым числом 3x + 17 = 5 →3x = -12,→ x = -4, y = -3 3x + 17 = 25→ 3x = 8 → х не является целым числом 3x + 17 = -25→3x = -42→ x = -14,y = -5 3x + 17 = 1→3x = -16→ х не является целым числом 3x +17 = -1→3x = -18→x = -6, y = -13 Ответ:(-4;-3), (-6;-13), (-14;-5)

Выделение целой части Найти все целочисленные решения уравнения: 2x²-2xy+9x+y = 2 Решение. Выразим у через х и выделим целую часть: 2xy-y = 2x² +9x — 2 y (2x-1)=2x² + 9x- 2 Т.к. у должно быть целым числом, то дробь также целое, а это значит что число 3 делится на (2х-1). Получаем: если 2x — 1=1, то x = 1, y = 9 если 2x — 1=-1, то x = 0, y = 2 если 2x — 1= 3, то x=2, y = 8 если 2x — 1 = -3, то x = -1, y = 3 Ответ: (1;9), (0;2), (2;8), (-1;3)

Использование дискриминанта (неотрицательность) Решите уравнение 3(x² + xy + y² ) = x + 8y в целых числах. Решение. Рассмотрим уравнение, как квадратное относительно х: 3x² + (3y −1)x + 3y² −8y = 0. Найдем дискриминант уравнения D = −27y² + 90y +1. Данное уравнение имеет корни, если D ≥ 0, т.е. − 27y² + 90y +1≥ 0. Так как y Z, то получаем 0 ≤ y ≤ 3. Перебирая эти значения, получим, что исходное уравнение в целых числах имеет решения (0;0) и (1;1). Ответ: (0;0); (1;1).

Использование дискриминанта (полный квадрат) Решите уравнение x² − xy + y² = x + y в целых числах. Решение. Рассмотрим уравнение, как квадратное относительно х: x² − ( y +1)x + y² − y = 0. Его дискриминант D = −3y² + 6y +1 = t² должен быть квадратом некоторого целого числа t. Получаем новое уравнение 3y² − 6y −1+ t² = 0; 3( y −1)² + t² = 4. Из последнего уравнения следует, что t² ≤ 4, т.е.|t| ≤ 2. 1) Если t ² = 0, то уравнение 3(y −1)² = 4 не имеет целого решения у.

2) Если t ² =1, то уравнение 3(y −1)² = 3 имеет целые решения При y = 2 получаем квадратное уравнение x² − 3x + 2 = 0 с корнями x = 1 или x = 2 . При y = 0 получаем квадратное уравнение x² − x = 0 с корнями x = 0 или x =1. 3) Если t ² = 4, то уравнение 3( y −1)² = 0 имеет одно целое решение y =1. При y =1 получаем квадратное уравнение x² − 2x = 0 с корнями x = 0 или x = 2 . Ответ: (1;2); (2;2); (0;0); (1;0), (0;1); (2;1)

Приведение к сумме неотрицательных выражений Решить уравнение в целых числах : x²+6xy+13y² = 40. Решение. Преобразуем левую часть уравнения, выделив полный квадрат относительно переменной х: x²+6xy+9y²+4y² = 40; (x+3y)²+4y² = 40. Откуда получаем что(2y)² ≤ 40 ,т.е. |y| ≤ 3 Перебирая значения у, получим системы: Ответ: (1; 3), (1;-9), (-1; 9), (-1; -3)

Метод «спуска» ● Решите уравнение 2x² − 5y² = 7 в целых числах. Решение. Так как 2x² — четное число, а 7 — нечетное, то 5y² должно быть нечетным, т.е. у –нечетное. Пусть y = 2z +1, z Z , тогда данное уравнение можно переписать в виде x² −10z² −10z = 6. Отсюда видно, что х должно быть четным. Пусть x = 2m, тогда последнее уравнение примет вид 2m² − 5z(z +1) = 3, что невозможно, так как число z(z +1) — четно, а разность двух четных чисел не может быть равна нечетному числу. Таким образом, данное уравнение не имеет решений в целых числах. Ответ: нет решений

Краткое описание документа:

Решение уравнений в целых числах Мирошниченко Н.Е. учитель математики МАУ ШИЛИ Г. Калининград 1.Метод прямого перебора Имеются детали массой 8 кг и 3 кг . Сколько необходимо взять тех и других деталей, чтобы получить груз 30 кг? Решение: Пусть х – количество деталей массой 3 кг, а у — количество деталей массой 8 кг. Составим уравнение: 3х + 8у=30 Если х = 1, то 8у =27 , следовательно, у не является натуральным числом Если х =2, то 8у =24 , следовательно, у =3 Если х = 3, то 8у =21 , следовательно, у не является натуральным числом Если х = 4, то 8у =18 , следовательно, у не является натуральным числом Если х =5, то 8у =15 , следовательно, у не является натуральным числом Если х = 6, то 8у =12 , следовательно, у не является натуральным числом Если х = 7, то 8у =9 , следовательно, у не является натуральным числом Если х = 8, то 8·3+8>30 , Ответ: 2 детали по 3 кг и 3 детали по 8 кг. 2.Использование неравенств Решите в натуральных числах уравнение 3x + 6y = 21. Решение. Для уменьшения перебора вариантов рассмотрим неравенства Проведем перебор по неизвестной у. Если y = 1, то x = 5 Если y = 2, то x = 3 Если y = 3, то x = 1. Ответ: (5;1), (3; 2)(;1;3). 3.Использование отношения делимости Решить уравнение в целых числах 13x +16y = 300. Решение. 13x +13y + 3y = 13· 23 +1, 3y −1 = 13(23 − x − y). Отсюда следует, что разность 3y −1 делится на 13. Если 3y −1 = 0, то у не является натуральным числом. Если 3y −1 = 13, то у не является натуральным числом. Если 3y −1 = 26, то y = 9 и x = 12. Если 3y −1 = 39, то у не является натуральным числом. Если 3y −1 = 52, то у не является натуральным числом Если 3y −1 = 65, то y = 22, но16·22 = 352 > 300. Ответ: (12;9) 4. Выделение целой части Решить уравнение 8x + 5y = 39 . Решение. Выразим у из уравнения и выделим целую часть: Отсюда следует, что разность 3x − 4 делится на 5. Если 3x − 4 = 0, то х не является натуральным числом. Если 3x − 4 = 5, то x = 3 и y = 3. Если 3x − 4 = 10, то х не является натуральным числом. Если 3x − 4 = 15, то х не является натуральным числом. Если 3x − 4 = 20, то x = 8, но 8 8 = 64 > 39. Ответ: (3; 3). 5. Метод остатков Решите уравнение 3x − 4y = 1 в целых числах. Решение. Перепишем уравнение в виде 3x = 4y +1. Поскольку левая часть уравнения делится на 3, то должна делиться на 3 и правая часть. Рассмотрим три случая. 1) Если y = 3m, где m Z, то 4y +1 = 12m +1 не делится на 3. 2) Если y = 3m +1, то 4y +1 = 4(3m +1) +1 = 12m + 5 не делится на 3. 3) Если y = 3m + 2, то 4y +1 = 4(3m + 2) +1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, x = 4m + 3. Ответ: x = 4m + 3, y = 3m + 2, где m Z. 6. Метод «спуска» Решите в целых числах уравнение 5x − 7 y = 3. Решение. Выразим из уравнения то неизвестное, коэффициент при котором меньше по модулю: Дробь должна быть равна целому числу. Положим , где z – целое число. Тогда 2y + 3 = 5z. Из последнего уравнения выразим то неизвестное, коэффициент при котором меньше по модулю, и проделаем аналогичные преобразования: Дробь должна быть целым числом. Обозначим ,где t– целое число. Отсюда z = 2t − 3. Последовательно возвращаемся к неизвестным х и у: y = 3(2t − 3) − t = 5t − 9, x = y + z = 5t − 9 + 2t − 3 = 7t −12. Ответ: x = 7t – 12, y = 5t – 9, где t – целое число 7.Метод последовательного уменьшения коэффициентов по модулю Решить уравнение в целых числах 20х + 3у=10 Решение. Коэффициенты при переменных х и у – взаимно простые числа и свободный член — целое число. Коэффициент при х больше коэффициента при у. Представим его в виде суммы двух натуральных слагаемых так, чтобы первое слагаемое было наибольшим числом, кратным числу 3 ( коэффициенту при у). Получим: 20х + 3у = 10 (18 +2) х +3у=10 18х +2х+3у=10 3(6х+у)+2х=10 Обозначим выражение 6х + у = k. (1) Получим уравнение 3k+2x =10 с переменными k и х. Проведем аналогичные преобразования с полученным уравнением: (2 + 1) k + 2 x =10 2(k + x) + k =10 Обозначим выражение k + х = n (2). Получим уравнение 2 n + k =10 k = 10 – 2n Подставим в равенство (2) вместо k выражение 10 – 2n: 10 – 2n +x = n x = 3n – 10 Мы получили одну из формул решений уравнения 20x – 3y = 10 Чтобы получить вторую формулу, подставим в равенство(1) вместо х выражение +3n -10, а вместо k выражение 10-2n: 6(3n – 10)+y = 10 – 20n y = 70 – 20n Формулы х = 3n – 10; y = 70 – 20n при n = 0, ± 1, ±2; … дают все целочисленные решения уравнения 8 . Использование формул Теорема. Если а и b – взаимно просты и пара — какое-нибудь целочисленное решение уравнения aх + by = c, то все целочисленные решения этого уравнения описываются формулами: , где Доказательство: Пусть пара — какое-нибудь целочисленное решение уравнения ах + by = c , т.е. . Сделаем замену переменных: Тогда в новых переменных уравнение примет вид: . Т.к. а и b – взаимно просты, то уравнение имеет решения, если Тогда получим Возвращаясь к старым переменным, получаем, что 8 . Использование формул Найти целочисленные решения уравнения 13х = 6у — 19 Решение. Найдем одно целочисленное решение уравнения: , и выполним преобразования Ответ: 9. Использование конечных цепных дробей Решите в целых числах уравнение 127x − 52y +1= 0 Решение. Преобразуем отношение коэффициентов при неизвестных. Прежде всего, выделим целую часть неправильной дроби . Правильную дробь заменим равной ей дробью Тогда получим . Проделаем такие же преобразования с полученной в знаменателе неправильной дробью Теперь исходная дробь примет вид: . Повторяя те же рассуждения для дроби получим . Выделяя целую часть неправильной дроби , придем к окончательному результату: Мы получили выражение, которое называется конечной цепной или непрерывной дробью. Отбросив последнее звено этой цепной дроби –одну пятую, превратим получающуюся при этом новую цепную дробь в простую и вычтем ее из исходной дроби : . Итак, Приведем полученное выражение к общему знаменателю и отбросив знаменатель, получим: Из сопоставления полученного равенства с уравнением 127x − 52y +1= 0 следует, что x = 9 , y = 22 будет решением этого уравнения, и согласно теореме все его решения будут содержаться в формулах x = 9 + 52t , y = 22 +127t ,где t Z. Ответ: x = 9 + 52t , y = 22 + 127t , где t Z. НЕЛИНЕЙНЫЕ УРАВНЕНИЯ Метод разложения на множители а) вынесение общего множителя за скобки Решить уравнение : х² + 2ху = 4х + 7 Решение: х² + 2ху — 4х = 7, (х + 2у -2)х = 7 Составим четыре системы уравнений: решив которые, получим Ответ: (1; 5), (7; -1), (-1; -1), (-7; 5) б) применение формул сокращенного умножения Найдите все пары натуральных чисел, разность квадратов которых равна 33. Решение. Запишем условие задачи в виде уравнения (m + n)(m — n) = 33 т.к(m + n)>(m – n) ,то получим две системы уравнений: Ответ: (17; 16), (7; 4), в) способ группировки. Решить уравнение: xy — 2x + 3y = 16. Решение: х(у – 2) + 3у – 6 = 10 х(у – 2 ) + 3(у – 2) = 10 (х + 3)(у – 2) = 10 получаем восемь систем уравнений: Решив полученные системы уравнений, получим: Решив полученные системы уравнений, получаем: Ответ: (7;3), (-2; 12), (-1;7), (2;4), (-13;1), (-4;-8), (-5;-3), (-8;0). Ответ: (7; 3), (-2; 12), (-1; 7), (2; 4), (-13; 1), (-4; -8), (-5; -3), (-8; 0) г) разложение квадратного трехчлена Решить уравнение в целых числах : х² — 5ху+4у²=13 Решение: Решив уравнение х² — 5ху+4у²=0 относительно переменной х , получим . Теперь можно разложить левую часть уравнения на множители. Получаем (х – у)(х – 4у)=13 13 = 1·13=13·1=(-1)·(-13)=(-13)·(-1) Составим четыре системы уравнений: Решив полученные системы уравнений, получим ответ: Ответ: (-3; -4), (3; 4), (17;4), (-17;-4) д) использование параметра Решите уравнение 2x²− 2xy + 9x + y = 2 в целых числах. Решение. Перепишем уравнение в виде 2x² − (2y − 9)x + y − 2 + a = a и разложим левую часть уравнения на множители как квадратный трехчлен относительно х. Находим дискриминант D = 4y² − 44y + 97 −8a. Очевидно, если 97 −8a =121, то дискриминант будет полным квадратом. При этом a = −3 и Отсюда . Уравнение принимает вид (2x −1)(x − y + 5) =−3. -3=1·(-3)=(-1)·3= 3·(-1)=(-3)·1 Из этого уравнения получим следующие системы уравнений: Решив эти системы, получим: Ответ: (1;9); (0;2); (2;8); (−1;3). 2. Метод решения относительно одной переменной Выделение целой части Решить уравнение в целых числах: 3xy + 14x + 17y +71= 0 Решение: 3xy+17y=-14x — 71 ; y(3x+17)=-14x-71 , где 3х + 17≠0 Т.к. у должно быть целым числом, то 3у тоже целое число, следовательно, дробь также целое число,и значит 25 делится на (3х+17). Получаем: 3x + 17 = -5→ 3x = -22→ х не является целым числом 3x + 17 = 5 →3x = -12,→ x = -4, y = -3 3x + 17 = 25→ 3x = 8 → х не является целым числом 3x + 17 = -25→3x = -42→ x = -14,y = -5 3x + 17 = 1→3x = -16→ х не является целым числом 3x +17 = -1→3x = -18→x = -6, y = -13 Ответ:(-4;-3), (-6;-13), (-14;-5) Выделение целой части Найти все целочисленные решения уравнения: 2x²-2xy+9x+y = 2 Решение. Выразим у через х и выделим целую часть: 2xy-y = 2x² +9x — 2 y (2x-1)=2x² + 9x- 2 Т.к. у должно быть целым числом, то дробь также целое, а это значит что число 3 делится на (2х-1). Получаем: если 2x — 1=1, то x = 1, y = 9 если 2x — 1=-1, то x = 0, y = 2 если 2x — 1= 3, то x=2, y = 8 если 2x — 1 = -3, то x = -1, y = 3 Ответ: (1;9), (0;2), (2;8), (-1;3) Использование дискриминанта (неотрицательность) Решите уравнение 3(x² + xy + y² ) = x + 8y в целых числах. Решение. Рассмотрим уравнение, как квадратное относительно х: 3x² + (3y −1)x + 3y² −8y = 0. Найдем дискриминант уравнения D = −27y² + 90y +1. Данное уравнение имеет корни, если D ≥ 0, т.е. − 27y² + 90y +1≥ 0. Так как y Z, то получаем 0 ≤ y ≤ 3. Перебирая эти значения, получим, что исходное уравнение в целых числах имеет решения (0;0) и (1;1). Ответ: (0;0); (1;1). Использование дискриминанта (полный квадрат) Решите уравнение x² − xy + y² = x + y в целых числах. Решение. Рассмотрим уравнение, как квадратное относительно х: x² − ( y +1)x + y² − y = 0. Его дискриминант D = −3y² + 6y +1 = t² должен быть квадратом некоторого целого числа t. Получаем новое уравнение 3y² − 6y −1+ t² = 0; 3( y −1)² + t² = 4. Из последнего уравнения следует, что t² ≤ 4, т.е.|t| ≤ 2. 1) Если t ² = 0, то уравнение 3(y −1)² = 4 не имеет целого решения у. 2) Если t ² =1, то уравнение 3(y −1)² = 3 имеет целые решения При y = 2 получаем квадратное уравнение x² − 3x + 2 = 0 с корнями x = 1 или x = 2 . При y = 0 получаем квадратное уравнение x² − x = 0 с корнями x = 0 или x =1. 3) Если t ² = 4, то уравнение 3( y −1)² = 0 имеет одно целое решение y =1. При y =1 получаем квадратное уравнение x² − 2x = 0 с корнями x = 0 или x = 2 . Ответ: (1;2); (2;2); (0;0); (1;0), (0;1); (2;1) 3. Метод оценки Приведение к сумме неотрицательных выражений Решить уравнение в целых числах : x²+6xy+13y² = 40. Решение. Преобразуем левую часть уравнения, выделив полный квадрат относительно переменной х: x²+6xy+9y²+4y² = 40; (x+3y)²+4y² = 40. Откуда получаем что(2y)² ≤ 40 ,т.е. |y| ≤ 3 Перебирая значения у, получим системы: Ответ: (1; 3), (1;-9), (-1; 9), (-1; -3) Метод «спуска» ● Решите уравнение 2x² − 5y² = 7 в целых числах. Решение. Так как 2x² — четное число, а 7 — нечетное, то 5y² должно быть нечетным, т.е. у –нечетное. Пусть y = 2z +1, z Z , тогда данное уравнение можно переписать в виде x² −10z² −10z = 6. Отсюда видно, что х должно быть четным. Пусть x = 2m, тогда последнее уравнение примет вид 2m² − 5z(z +1) = 3, что невозможно, так как число z(z +1) — четно, а разность двух четных чисел не может быть равна нечетному числу. Таким образом, данное уравнение не имеет решений в целых числах. Ответ: нет решений

Линейные диофантовы уравнения онлайн

Линейным диофантовым уравнением с двумя неизвестными называется уравнение вида:

В основе нашего калькулятора лежит расширенный алгоритм Евклида, записанный в виде цепной дроби. Однако, в некоторых случаях (например, когда коэффициент ) применяются более простые подходы. Также калькулятор не рассматривает случаи, когда хотя бы один из коэффициентов или равен , так как они приводят к обычному линейному уравнению.

Если коэффициент не делится нацело на , то линейное диофантово уравнение с двумя неизвестными не имеет решений. Напротив, если делится нацело на , то указанное уравнение имеет бесконечное множество целых решений.

Для решения линейного диофантового уравнения с двумя неизвестными сначала необходимо найти частное решение и , а затем записать общее решение, используя формулы:

Рассмотрим пример решения линейного диофантового уравнения с двумя неизвестными:

Поскольку делится нацело на , то данное уравнение имеет решения в целых числах.

Далее, найдём какое-нибудь конкретное (частное) решение и исходного уравнения. Для этого, сначала необходимо найти частное решение и вспомогательного уравнения с коэффициентом :

а затем умножить найденное частное решение и вспомогательного уравнения на и получить частное решение и исходного уравнения:

Чтобы найти частное решение вспомогательного уравнения используем цепные дроби. Для этого составим дробь , числителем которой будет коэффициент , а знаменателем коэффициент .

Преобразуем данную дробь в цепную дробь:

В полученной цепной дроби отбросим последнюю дробь :

Полученная дробь является отношением частных решений и выбранных с правильным знаком:

Подставляя четыре значения во вспомогательное уравнение, определяем его частное решение:

Теперь, чтобы найти частное решение и исходного уравнения, умножим найденное частное решение и вспомогательного уравнения на :

Используя формулы для общего решения, запишем конечный ответ:

Наш онлайн калькулятор может решить любое линейное диофантово уравнение с двумя неизвестными с описанием подробного хода решения на русском языке. Чтобы начать работу, необходимо ввести уравнение и задать искомые переменные.


источники:

http://infourok.ru/prezentaciya-po-matematike-na-temu-reshenie-uravneniya-v-celih-chislah-1033677.html

http://mathforyou.net/online/equation/diophantine/linear/

Номер задания