14 дифференциальные уравнения первого порядка с разделенными и разделяющимися переменными

Дифференциальные уравнения с разделяющимися переменными

В целом ряде обыкновенных ДУ 1 -го порядка существуют такие, в которых переменные х и у можно разнести в правую и левую части записи уравнения. Переменные могут быть уже разделены, как это можно видеть в уравнении f ( y ) d y = g ( x ) d x . Разделить переменные в ОДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x можно путем проведения преобразований. Чаще всего для получения уравнений с разделяющимися переменными применяется метод введения новых переменных.

В этой теме мы подробно разберем метод решения уравнений с разделенными переменными. Рассмотрим уравнения с разделяющимися переменными и ДУ, которые можно свести к уравнениям с разделяющимися переменными. В разделе мы разобрали большое количество задач по теме с подробным разбором решения.

Для того, чтобы облегчить себе усвоение темы, рекомендуем ознакомиться с информацией, которая размещена на странице «Основные определения и понятия теории дифференциальных уравнений».

Дифференциальные уравнения с разделенными переменными f ( y ) d y = g ( x ) d x

Уравнениями с разделенными переменными называют ДУ вида f ( y ) d y = g ( x ) d x . Как следует из названия, переменные, входящие в состав выражения, находятся по обе стороны от знака равенства.

Договоримся, что функции f ( y ) и g ( x ) мы будем считать непрерывными.

Для уравнений с разделенными переменными общий интеграл будет иметь вид ∫ f ( y ) d y = ∫ g ( x ) d x . Общее решение ДУ в виде неявно заданной функции Ф ( x , y ) = 0 мы можем получить при условии, что интегралы из приведенного равенства выражаются в элементарных функциях. В ряде случаев выразить функцию у получается и в явном виде.

Найдите общее решение дифференциального уравнения с разделенными переменными y 2 3 d y = sin x d x .

Проинтегрируем обе части равенства:

∫ y 2 3 d y = ∫ sin x d x

Это, по сути, и есть общее решение данного ДУ. Фактически, мы свели задачу нахождения общего решения ДУ к задаче нахождения неопределенных интегралов.

Теперь мы можем использовать таблицу первообразных для того, чтобы взять интегралы, которые выражаются в элементарных функциях:

∫ y 2 3 d y = 3 5 y 5 3 + C 1 ∫ sin x d x = — cos x + C 2 ⇒ ∫ y 2 3 d y = ∫ sin x d x ⇔ 3 5 y 3 5 + C 1 = — cos x + C 2
где С 1 и С 2 – произвольные постоянные.

Функция 3 5 y 3 5 + C 1 = — cos x + C 2 задана неявно. Она является общим решением исходного дифференциального уравнения с разделенными переменными. Мы получили ответ и можем не продолжать решение. Однако в рассматриваемом примере искомую функцию можно выразить через аргумент х явно.

3 5 y 5 3 + C 1 ⇒ y = — 5 3 cos x + C 3 5 , где C = 5 3 ( C 2 — C 1 )

Общим решением данного ДУ является функция y = — 5 3 cos x + C 3 5

Ответ:

Мы можем записать ответ несколькими способами: ∫ y 2 3 d y = ∫ sin x d x или 3 5 y 5 3 + C 1 = — cos x + C 2 , или y = — 5 3 cos x + C 3 5

Всегда стоит давать понять преподавателю, что вы наряду с навыками решения дифференциальных уравнений также располагаете умением преобразовывать выражения и брать интегралы. Сделать это просто. Достаточно дать окончательный ответ в виде явной функции или неявно заданной функции Ф ( x , y ) = 0 .

Дифференциальные уравнения с разделяющимися переменными f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x

y ‘ = d y d x в тех случаях, когда у является функцией аргумента х .

В ДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x ) d x мы можем провести преобразования таким образом, чтобы разделить переменные. Этот вид ДУ носит название ДУ с разделяющимися переменными. Запись соответствующего ДУ с разделенными переменными будет иметь вид f 1 ( y ) f 2 ( y ) d y = g 2 ( x ) g 1 ( x ) d x .

Разделяя переменные, необходимо проводить все преобразования внимательно для того, чтобы избежать ошибок. Полученное и исходное уравнения должны быть эквивалентны друг другу. В качестве проверки можно использовать условие, по которому f 2 ( y ) и g 1 ( x ) не должны обращаться в ноль на интервале интегрирования. Если это условие не выполняется, то есть вероятность, что ы потеряем часть решений.

Найти все решения дифференциального уравнения y ‘ = y · ( x 2 + e x ) .

Мы можем разделить х и у , следовательно, мы имеем дело с ДУ с разделяющимися переменными.

y ‘ = y · ( x 2 + e x ) ⇔ d y d x = y · ( x 2 + e x ) ⇔ d y y = ( x 2 + e x ) d x п р и y ≠ 0

При у = 0 исходное уравнение обращается в тождество: 0 ‘ = 0 · ( x 2 + e x ) ⇔ 0 ≡ 0 . Это позволят нам утверждать, что у = 0 является решением ДУ. Это решение мы могли не учесть при проведении преобразований.

Выполним интегрирование ДУ с разделенными переменными d y y = ( x 2 + e x ) d x :
∫ d y y = ∫ ( x 2 + e x ) d x ∫ d y y = ln y + C 1 ∫ ( x 2 + e x ) d x = x 3 3 + e x + C 2 ⇒ ln y + C 1 = x 3 3 + e x + C 2 ⇒ ln y = x 3 3 + e x + C

Проводя преобразование, мы выполнили замену C 2 — C 1 на С . Решение ДУ имеет вид неявно заданной функции ln y = x 3 3 + e x + C . Эту функцию мы в состоянии выразить явно. Для этого проведем потенцирование полученного равенства:

ln y = x 3 3 + e x + C ⇔ e ln y = e x 3 3 + e x + C ⇔ y = e x 3 3 + e x + C

Ответ: y = e x 3 3 + e x + C , y = 0

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0

Для того, чтобы привести обыкновенное ДУ 1 -го порядка y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0 , к уравнению с разделяющимися переменными, необходимо ввести новую переменную z = a x + b y , где z представляет собой функцию аргумента x .

z = a x + b y ⇔ y = 1 b ( z — a x ) ⇒ y ‘ = 1 b ( z ‘ — a ) f ( a x + b y ) = f ( z )

Проводим подстановку и необходимые преобразования:

y ‘ = f ( a x + b y ) ⇔ 1 b ( z ‘ — a ) = f ( z ) ⇔ z ‘ = b f ( z ) + a ⇔ d z b f ( z ) + a = d x , b f ( z ) + a ≠ 0

Найдите общее решение дифференциального уравнения y ‘ = 1 ln ( 2 x + y ) — 2 и частное решение, удовлетворяющее начальному условию y ( 0 ) = e .

Введем переменную z = 2 x + y , получаем:

y = z — 2 x ⇒ y ‘ = z ‘ — 2 ln ( 2 x + y ) = ln z

Результат, который мы получили, подставляем в исходное выражение, проводим преобразование его в ДУ с разделяющимися переменными:

y ‘ = 1 ln ( 2 x + y ) — 2 ⇔ z ‘ — 2 = 1 ln z — 2 ⇔ d z d x = 1 ln z

Проинтегрируем обе части уравнения после разделения переменных:

d z d z = 1 ln z ⇔ ln z d z = d x ⇔ ∫ ln z d z = ∫ d x

Применим метод интегрирования по частям для нахождения интеграла, расположенного в левой части записи уравнения. Интеграл правой части посмотрим в таблице.

∫ ln z d z = u = ln z , d v = d z d u = d z z , v = z = z · ln z — ∫ z d z z = = z · ln z — z + C 1 = z · ( ln z — 1 ) + C 1 ∫ d x = x + C 2

Мы можем утверждать, что z · ( ln z — 1 ) + C 1 = x + C 2 . Теперь, если мы примем, что C = C 2 — C 1 и проведем обратную замену z = 2 x + y , то получим общее решение дифференциального уравнения в виде неявно заданной функции:

( 2 x + y ) · ( ln ( 2 x + y ) — 1 ) = x + C

Теперь примемся за нахождение частного решения, которое должно удовлетворять начальному условию y ( 0 ) = e . Проведем подстановку x = 0 и y ( 0 ) = e в общее решение ДУ и найдем значение константы С .

( 2 · 0 + e ) · ( ln ( 2 · 0 + e ) — 1 ) = 0 + C e · ( ln e — 1 ) = C C = 0

Получаем частное решение:

( 2 x + y ) · ( ln ( 2 x + y ) — 1 ) = x

Так как в условии задачи не был задан интервал, на котором необходимо найти общее решение ДУ, то мы ищем такое решение, которое подходит для всех значений аргумента х , при которых исходное ДУ имеет смысл.

В нашем случае ДУ имеет смысл при ln ( 2 x + y ) ≠ 0 , 2 x + y > 0

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f x y или y ‘ = f y x

Мы можем свести ДУ вида y ‘ = f x y или y ‘ = f y x к дифференциальным уравнениям с разделяющимися переменными путем выполнения замены z = x y или z = y x , где z – функция аргумента x .

Если z = x y , то y = x z и по правилу дифференцирования дроби:

y ‘ = x y ‘ = x ‘ · z — x · z ‘ z 2 = z — x · z ‘ z 2

В этом случае уравнения примут вид z — x · z ‘ z 2 = f ( z ) или z — x · z ‘ z 2 = f 1 z

Если принять z = y x , то y = x ⋅ z и по правилу производной произведения y ‘ = ( x z ) ‘ = x ‘ z + x z ‘ = z + x z ‘ . В этом случае уравнения сведутся к z + x z ‘ = f 1 z или z + x z ‘ = f ( z ) .

Решите дифференциальное уравнение y ‘ = 1 e y x — y x + y x

Примем z = y x , тогда y = x z ⇒ y ‘ = z + x z ‘ . Подставим в исходное уравнение:

y ‘ = 1 e y x — y x + y x ⇔ z + x z ‘ = 1 e z — z + z ⇔ x · d z d x = 1 e z — z ⇔ ( e z — z ) d z = d x x

Проведем интегрирование уравнения с разделенными переменными, которое мы получили при проведении преобразований:

∫ ( e z — z ) d z = ∫ d x x e z — z 2 2 + C 1 = ln x + C 2 e z — z 2 2 = ln x + C , C = C 2 — C 1

Выполним обратную замену для того, чтобы получить общее решение исходного ДУ в виде функции, заданной неявно:

e y x — 1 2 · y 2 x 2 = ln x + C

А теперь остановимся на ДУ, которые имеют вид:

y ‘ = a 0 y n + a 1 y n — 1 x + a 2 y n — 2 x 2 + . . . + a n x n b 0 y n + b 1 y n — 1 x + b 2 y n — 2 x 2 + . . . + b n x n

Разделив числитель и знаменатель дроби, расположенной в правой части записи, на y n или x n , мы можем привести исходное ДУ в виду y ‘ = f x y или y ‘ = f y x

Найти общее решение дифференциального уравнения y ‘ = y 2 — x 2 2 x y

В этом уравнении х и у отличны от 0 . Это позволяет нам разделить числитель и знаменатель дроби, расположенной в правой части записи на x 2 :

y ‘ = y 2 — x 2 2 x y ⇒ y ‘ = y 2 x 2 — 1 2 y x

Если мы введем новую переменную z = y x , то получим y = x z ⇒ y ‘ = z + x z ‘ .

Теперь нам необходимо осуществить подстановку в исходное уравнение:

y ‘ = y 2 x 2 — 1 2 y x ⇔ z ‘ x + z = z 2 — 1 2 z ⇔ z ‘ x = z 2 — 1 2 z — z ⇔ z ‘ x = z 2 — 1 — 2 z 2 2 z ⇔ d z d x x = — z 2 + 1 2 z ⇔ 2 z d z z 2 + 1 = — d x x

Так мы пришли к ДУ с разделенными переменными. Найдем его решение:

∫ 2 z d z z 2 + 1 = — ∫ d x x ∫ 2 z d z z 2 + 1 = ∫ d ( z 2 + 1 ) z 2 + 1 = ln z 2 + 1 + C 1 — ∫ d x x = — ln x + C 2 ⇒ ln z 2 + 1 + C 1 = — ln x + C 2

Для этого уравнения мы можем получить решение в явном виде. Для этого примем — ln C = C 2 — C 1 и применим свойства логарифма:

ln z 2 + 1 = — ln x + C 2 — C 1 ⇔ ln z 2 + 1 = — ln x — ln C ⇔ ln z 2 + 1 = — ln C x ⇔ ln z 2 + 1 = ln C x — 1 ⇔ e ln z 2 + 1 = e ln 1 C x ⇔ z 2 + 1 = 1 C x ⇔ z ± 1 C x — 1

Теперь выполним обратную замену y = x ⋅ z и запишем общее решение исходного ДУ:

y = ± x · 1 C x — 1

В даном случае правильным будет и второй вариант решения. Мы можем использовать замену z = x y Рассмотрим этот вариант более подробно.

Выполним деление числителя и знаменателя дроби, расположенной в правой части записи уравнения на y 2 :

y ‘ = y 2 — x 2 2 x y ⇔ y ‘ = 1 — x 2 y 2 2 x y

Тогда y ‘ = 1 — x 2 y 2 2 x y ⇔ z — z ‘ x z 2 = 1 — z 2 2 z

Проведем подстановку в исходное уравнение для того, чтобы получить ДУ с разделяющимися переменными:

y ‘ = 1 — x 2 y 2 2 x y ⇔ z — z ‘ x z 2 = 1 — z 2 2 z

Разделив переменные, мы получаем равенство d z z ( z 2 + 1 ) = d x 2 x , которое можем проинтегрировать:

∫ d z z ( z 2 + 1 ) = ∫ d x 2 x

Если мы разложим подынтегральную функцию интеграла ∫ d z z ( z 2 + 1 ) на простейшие дроби, то получим:

∫ 1 z — z z 2 + 1 d z

Выполним интегрирование простейших дробей:

∫ 1 z — z z 2 + 1 d z = ∫ z d z z 2 + 1 = ∫ d t z — 1 2 ∫ d ( z 2 + 1 ) z 2 + 1 = = ln z — 1 2 ln z 2 + 1 + C 1 = ln z z 2 + 1 + C 1

Теперь найдем интеграл ∫ d x 2 x :

∫ d x 2 x = 1 2 ln x + C 2 = ln x + C 2

В итоге получаем ln z z 2 + 1 + C 1 = ln x + C 2 или ln z z 2 + 1 = ln C · x , где ln C = C 2 — C 1 .

Выполним обратную замену z = x y и необходимые преобразования, получим:

y = ± x · 1 C x — 1

Вариант решения, при котором мы выполняли замену z = x y , оказался более трудоемким, чем в случае замены z = y x . Этот вывод будет справедлив для большого количества уравнений вида y ‘ = f x y или y ‘ = f y x . Если выбранный вариант решения подобных уравнений оказывается трудоемким, можно вместо замены z = x y ввести переменную z = y x . На результат это никак не повлияет.

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R

Дифференциальные уравнения y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 можно свести к уравнениям y ‘ = f x y или y ‘ = f y x , следовательно, к уравнениям с разделяющимися переменными. Для этого находится ( x 0 , y 0 ) — решение системы двух линейных однородных уравнений a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0 и вводятся новые переменные u = x — x 0 v = y — y 0 . После такой замены уравнение примет вид d v d u = a 1 u + b 1 v a 2 u + b 2 v .

Найти общее решение дифференциального уравнения y ‘ = x + 2 y — 3 x — 1 .

Составляем и решаем систему линейных уравнений:

x + 2 y — 3 = 0 x — 1 = 0 ⇔ x = 1 y = 1

Делаем замену переменных:

u = x — 1 v = y — 1 ⇔ x = u + 1 y = v + 1 ⇒ d x = d u d y = d v

После подстановки в исходное уравнение получаем d y d x = x + 2 y — 3 x — 1 ⇔ d v d u = u + 2 v u . После деления на u числителя и знаменателя правой части имеем d v d u = 1 + 2 v u .

Вводим новую переменную z = v u ⇒ v = z · y ⇒ d v d u = d z d u · u + z , тогда

d v d u = 1 + 2 v u ⇔ d z d u · u + z = 1 + 2 z ⇔ d z 1 + z = d u u ⇒ ∫ d z 1 + z = ∫ d u u ⇔ ln 1 + z + C 1 = ln u + C 2 ⇒ ln 1 + z = ln u + ln C , ln C = C 2 — C 1 ln 1 + z = ln C · u 1 + z = C · u ⇔ z = C · u — 1 ⇔ v u = C · u — 1 ⇔ v = u · ( C · u — 1 )

Возвращаемся к исходным переменным, производя обратную замену u = x — 1 v = y — 1 :
v = u · ( C · u — 1 ) ⇔ y — 1 = ( x — 1 ) · ( C · ( x — 1 ) — 1 ) ⇔ y = C x 2 — ( 2 C + 1 ) · x + C + 2

Это есть общее решение дифференциального уравнения.

Дифференциальные уравнения с разделяющимися переменными и их интегрирование

п.1. Понятие дифференциального уравнения с разделяющимися переменными

Например:
\(y»+y’-4=5cos⁡x\) — ДУ второго порядка первой степени
\((y’)^3+5y^2=19\) – ДУ первого порядка третьей степени
\(\sqrt=y’x\) — ДУ первого порядка первой степени

Самыми простыми для решения будут такие уравнения, у которых можно разделить переменные, т.е. собрать всё, что связано с функцией \(y\), по одну сторону знака равенства, и всё, что связано с независимой переменной \(x\), — по другую сторону.

Например:
Уравнение \(\sqrt=y’x\) является уравнением с разделяющимися переменными, т.к. $$ y’=\frac<\sqrt>=g(x)\cdot h(y),\ \ \text<где>\ g(x)=\frac1x,\ h(y)=\sqrt $$

Алгоритм решения ДУ с разделяющимися переменными
На входе: уравнение первого порядка \(y’=f(x,y)\), для которого \(f(x,y)=g(x)\cdot h(y)\)
Шаг 1. Записать производную в форме Лейбница \(y’=\frac\)
Шаг 2. Преобразовать уравнение
$$ \frac=g(x)\cdot h(y)\Rightarrow \frac=g(x)dx $$ Шаг 3. Проинтегрировать левую и правую части уравнения: $$ \int\frac=\int g(x)dx+C $$ Шаг 4. Результат интегрирования \(H(y)=G(x)+C\) — общее решение данного уравнения.
На выходе: выражение \(H(y)=G(x)+C\)

Например:
Решим уравнение \(\sqrt=y’x\)
1) Пусть \(x\ne 0\). Тогда: $$ y’=\frac<\sqrt>\Rightarrow\frac=\frac<\sqrt>\Rightarrow\frac<\sqrt>=\frac $$ Находим интегралы (константу запишем в конце): $$ \int\frac<\sqrt>=\frac<(y+1)^<\frac32>><\frac32>=\frac23\sqrt<(y+1)^3>,\ \ \int\frac=\ln|x| $$ Получаем общее решение: $$ \frac23\sqrt<(y+1)^3>=\ln|x|+C,\ x\ne 0 $$ 2) Пусть \(x=0\). Тогда по условию: \(\sqrt=0\Rightarrow y=-1\)
Точка (0;-1) – особое решение данного уравнения.

п.2. Задача Коши

Например:
Найдем решение задачи Коши для уравнения \(\sqrt=y’x\) при начальном условии \(y(1)=3\).
Общее решение нами уже найдено: \(\frac23\sqrt<(y+1)^3>=\ln|x|+C\) — этим выражением задано бесконечное множество кривых. Решить задачу Коши означает найти единственную кривую, проходящую через точку (1;3), т.е. конкретное значение C для заданных начальных условий.
Подставляем \(x=1\) и \(y=3:\frac23\sqrt<(3+1)^3>=\underbrace<\ln 1>_<=0>+C\Rightarrow C=\frac23\sqrt<4^3>=\frac<16><3>\)
Решение задачи Коши: \(\frac23\sqrt<(y+1)^3>=\ln|x|+\frac<16><3>\)
Выразим y в явном виде, что всегда приходится делать на практике: $$ \sqrt<(y+1)^3>=\frac32\ln|x|+8\Rightarrow y+1=\left(\frac32\ln|x|+8\right)^<\frac23>\Rightarrow y=\left(\frac32\ln|x|+8\right)^<\frac23>-1 $$ Ограничения ОДЗ: \( \begin y\geq -1\\ \frac32\ln|x|+8\geq 0 \end \Rightarrow |x|\geq -\frac<16><3>\Rightarrow |x|\geq e^<-\frac<16><3>> \)
Начальная точка \(x=1\gt e^<-\frac<16><3>>\), требования ОДЗ выполняются.
Т.к. \(x=1\gt 0\) в решении также можно убрать модуль.

п.3. Закон радиоактивного распада

В многочисленных экспериментах по определению радиоактивности вещества был установлен следующий факт:

Число распадов ΔN, которые произошли за интервал времени Δt, пропорционально числу атомов N в образце.

Перейдем к бесконечно малым \(dN\) и \(dt\) и запишем соответствующее этому факту дифференциальное уравнение: $$ \frac

=-\lambda N $$ где знак «-» учитывает уменьшение числа атомов N со временем.
Полученное ДУ является уравнением с разделяющимися переменными.
Найдем его общее решение: $$ \frac=-\lambda dt\Rightarrow\int\frac=-\lambda\int dt\Rightarrow \ln N=-\lambda t+C $$ Пусть в начальный момент времени \(t=0\) в образце было \(N_0\) атомов.
Решаем задачу Коши, находим \(C:\ \ln N_0=-\lambda\cdot 0+C\Rightarrow C=\ln N_0\)
Подставляем найденное C в общее решение. Получаем: $$ \ln N=-\lambda N+\ln N_0\Rightarrow \ln N-\ln N_0=-\lambda t\Rightarrow\ln\frac=-\lambda t\Rightarrow\frac=e^ <-\lambda t>$$

п.4. Зарядка конденсатора

Соберем цепь, состоящую из конденсатора C, резистора R, источника ЭДС E и ключа K.
Пусть в начальный момент времени конденсатор разряжен, напряжение на обкладках: \(U(0)=0\)
Замкнем ключ и начнем зарядку конденсатора.

По закону Ома для замкнутой цепи можем записать: $$ I(R+r_0)+U=\varepsilon $$ где \(I\) — ток в цепи, \(I(R+r_0)\) – падение напряжения на резисторе и источнике, \(U\) — напряжение на конденсаторе, \(\varepsilon\) – ЭДС источника.
Ток в цепи равен производной от заряда по времени: $$ I=\frac

=\frac
=C\frac
$$ Подставляем: $$ C\frac
\cdot (R+r_0)=\varepsilon-U $$ Получили ДУ с разделяющимися переменными: $$ \frac<\varepsilon-U>=\frac
$$ Интегрируем (не забываем про минус перед U в знаменателе): $$ \int\frac<\varepsilon-U>=-\ln(\varepsilon-U),\ \ \int\frac = \frac $$ Общее решение: $$ \ln(\varepsilon-U)=-\frac+B $$ где \(B\) константа, которую мы обозначили так, чтобы не путать с емкостью.
Начальное условие \(U(0)=0\). Подставляем: $$ \ln(\varepsilon-0)=-\frac<0>+B\Rightarrow B=\ln\varepsilon $$ Решение задачи Коши: \begin \ln(\varepsilon-U)=-\frac+\ln\varepsilon\\ \ln(\varepsilon-U)-\ln\varepsilon=-\frac\\ \ln\frac<\varepsilon-U><\varepsilon>=-\frac\Rightarrow\frac<\varepsilon-U><\varepsilon>=e^<-\frac>\Rightarrow \varepsilon e^<-\frac> \end

Если внутренне сопротивление источника пренебрежимо мало по сравнению с внешним сопротивлением, \(r_0\lt\lt R\), то получаем: $$ u(t)=\varepsilon\left(1-e^<-\frac>\right) $$ При \(t\rightarrow +\infty\) показатель экспоненты стремится к (\(-\infty\)), а сама экспонента стремится к нулю: \(U(t\rightarrow +\infty)=\varepsilon(1-e^<-\infty>)\), т.е. напряжение на обкладках конденсатора стремится к значению ЭДС источника.

Например:
При \(\varepsilon=5В,\ RC=0,01\) с график зарядки конденсатора имеет вид:

п.5. Примеры

Пример 1. Решите уравнение:
a) \(y’=e^\) \begin \frac=e^x\cdot e^y\Rightarrow e^<-y>dy=e^x dx\Rightarrow\int e^<-y>dy=\int e^x dx\Rightarrow -e^<-y>=e^x+C \end \(e^<-y>=-e^x+C\) (на константу, определенную от минус до плюс бесконечности, перемена знака не влияет).
\(-y=\ln⁡(-e^x+C) \)
\(y=-\ln⁡(C-e^x)\)
Ответ: \(y=\ln⁡(C-e^x)\)

б) \(xy+(x+1)y’=0\) \begin (x+1)y’=-xy\Rightarrow\frac=-\frac\Rightarrow\frac=-\fracdx\\ \int\frac=\ln|y|\\ -\int\fracdx=-\int\frac<(x+1)-1>dx=-\int\left(1-\frac<1>\right)dx=-x+\ln|x+1| \end Получаем: \(\ln|y|=-x+\ln|x+1|\)
Запишем константу немного по-другому, как \(\ln ⁡C\). Это удобно для потенцирования: \begin \ln|y|-x+\ln|x+1|+\ln C\\ \ln|y|-\ln C=-x+\ln|x+1|\\ \ln\frac<|y|>=-x+\ln|x+1|\\ e^<\ln\frac<|y|>>=e^<-x+\ln|x+1|>\\ \frac yC=e^<-x>\cdot (x+1)\\ y=Ce^<-x>(x+1) \end При преобразованиях мы делили на \((x+1)\) и \(y\), считая, что \(x\ne -1\) и \(y\ne 0\). Если подставить \(x=-1\) в решение, получим \(y=0\), т.е. эта точка не является особой, она входит в общее решение.
Ответ: \(y=Ce^<-x>(x+1)\)

Пример 2*. Найдите решение задачи Коши:
a) \(\frac+e^y=0,\ y(1)=0\) \begin \frac=-e^y\Rightarrow\frac=-x^2e^y\Rightarrow e^<-y>dy=-x^2dx\\ \int e^<-y>dy=-e^<-y>,\ \ -\int x^2dx=-\frac <3>\end Получаем: \begin -e^<-y>=-\frac<3>+C\Rightarrow e^<-y>=\frac<3>+C\Rightarrow -y=\ln\left|\frac<3>+C\right|\Rightarrow y=-\ln\left|\frac<3>+C\right| \end Общее решение: \(y=-\ln\left|\frac<3>+C\right|\)
Решаем задачу Коши. Подставляем начальные условия: $$ 0-\ln\left|\frac13+C\right|\Rightarrow\frac13+C=1\Rightarrow C=\frac23 $$ Решение задачи Коши: \(y=-\ln\left|\frac<3>\right|\)
Ответ: \(y=-\ln\left|\frac<3>\right|\)

б) \(x^2(y^2+5)+y^2(x^2+r)y’=0,\ y(0)=\sqrt<5>\) \begin y^2(x^2+5)y’=-x^2(y^2+5)\\ y’=\frac=-\frac\Rightarrow \fracdy=-\fracdx \end Используем табличный интеграл: \(\int\frac=\frac1a arctg\frac xa+C\) \begin \int\fracdy=\int\frac<(y^2+5)-5>dy=\int\left(1-\frac<5>\right)dy=y-5\cdot\frac<1><\sqrt<5>>arctg\frac<\sqrt<5>>=\\ =y-\sqrt<5>arctg\frac<\sqrt<5>> \end Аналогично: \(-\int\fracdx=-x+\sqrt<5>arctg\frac<\sqrt<5>>\)
Общее решение: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+C\)
Решаем задачу Коши. Подставляем начальные условия: $$ \sqrt<5>-\sqrt<5>arctg1=-0+0+C\Rightarrow C=\sqrt<5>-\frac<\pi\sqrt<5>><4>=\sqrt<5>\left(1-\frac\pi 4\right) $$ Решение задачи Коши: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+\sqrt<5>\left(1-\frac\pi 4\right)\)
Ответ: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+\sqrt<5>\left(1-\frac\pi 4\right)\)

Пример 3. Найдите массу радиоактивного вещества спустя время, равное четырем периодам полураспада, если начальная масса составляла 64 г.
При радиоактивном распаде атомы одного элемента превращаются в атомы другого, поэтому для массы вещества справедлив тот же закон, что и для количества атомов этого вещества: $$ m(t)=m_0 e^ <-\lambda t>$$ Период полураспада – это время, за которое масса уменьшается в 2 раза: $$ \frac\right)>=\frac12 $$ За время, равное 4 периодам полураспада, масса уменьшится: $$ \frac\right)>=\left(\frac12\right)^4=\frac<1> <16>$$ в 16 раз.
Получаем: $$ m\left(4T_<\frac12>\right)=\frac<16>,\ \ m\left(4T_<\frac12>\right)=\frac<64><16>=4\ \text <(г)>$$ Ответ: 4 г

Пример 4. Выведите зависимость \(U(t)\) на обкладках конденсатора при его разрядке в RC-цепи.

Разрядка конденсатора происходит в цепи без источника ЭДС.
Пусть в начальный момент заряд на обкладках \(U(0)=U_0.\)
Замкнем ключ и начнем разрядку конденсатора.

По закону Ома для замкнутой цепи: $$ IR+U=0 $$ Ток в цепи равен производной от заряда по времени: $$ I=\frac

=\frac
=C\frac
$$ Подставляем: $$ RC\frac
=-U $$ Получили ДУ с разделяющимися переменными: $$ \frac=-\frac
$$ Интегрируем: $$ \int\frac=\ln U,\ \ \int
=\frac $$ Общее решение: $$ \ln U=-\frac+B $$ где \(B\) константа, которую мы обозначили так, чтобы не путать с емкостью.
Начальное условие \(U(0)=0\). Подставляем: $$ \ln U_0=-\frac<0>+B\Rightarrow B=\ln U_0 $$ Решение задачи Коши: \begin \ln U=-\frac+\ln U_0\Rightarrow\ln U-\ln U_0=-\frac\Rightarrow \ln\frac=-\frac\\ \frac=e^<-\frac> \end
Изменение напряжение на обкладках конденсатора при разрядке: $$ U(t)=U_0 e^<-\frac> $$

Например, \(при U_0=5В,\ RC=0,01 с\) график разрядки конденсатора имеет вид:

Конспект занятия «Понятие дифференциального уравнения. Дифференциальные уравнения первого порядка с разделяющимися переменными»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 300 дидактических материалов для школьного и домашнего обучения

Понятие дифференциального уравнения. Дифференциальные уравнения первого порядка с разделяющимися переменными

Дифференциальным уравнением называется уравнение, содержащее производные неизвестной функции (или нескольких неизвестных функций). Вместо производных могут содержаться дифференциалы.

Если неизвестные функции зависят от одного аргумента, то дифференциальное уравнение называется обыкновенным, если от нескольких, то уравнение называется дифференциальным уравнением с частными производными. Будем рассматривать только обыкновенные дифференциальные уравнения.

Общий вид дифференциального уравнения с одной неизвестной функцией таков:

Порядком дифференциального уравнения называется порядок наивысшей из производных, входящих в это уравнение.

Функция у =(х) называется решением дифференциального уравнения, если последнее обращается в тождество после подстановки у =(х).

Основной задачей теории дифференциальных уравнений является нахождение всех решений данного дифференциального уравнения. В простейших случаях эта задача сводится к вычислению интеграла. Поэтому решение дифференциального уравнения называют также его интегралом, а процесс нахождения всех решенийинтегрированием дифференциального уравнения.

Вообще интегралом данного дифференциального уравнения называют всякое уравнение, не содержащее производных, из которого данное дифференциальное уравнение вытекает как следствие .

Дифференциальные уравнения первого порядка

Уравнение вида F ( x , y , y ‘)=0, где хнезависимая переменная; уискомая функция; у’её производная, называется дифференциальным уравнением первого порядка.

Если уравнение можно разрешить относительно у’, то оно принимает вид: y ‘ = f ( x , y ) и называется уравнением первого порядка, разрешенным относительно производной.

Дифференциальное уравнение удобно записать в виде: , являющемся частным случаем более общего уравнения (в симметрической форме): P ( x , y ) dx + Q ( x , y ) dy =0, где Р ( x , y ) и Q ( x , y ) — известные функции.

Уравнение в симметричной форме удобно тем, что переменные х и у в нем равноправны, т.е. каждую из них можно рассматривать как функцию от другой.

Решением дифференциального уравнения первого прядка называется функция у =( х ) , которая при подстановке в уравнение обращает его в тождество.

График решения дифференциального уравнения называется интегральной кривой.

Общим решением уравнения в некоторой области G плоскости Оху называется функция у =( х , С ), зависящая от х и произвольной постоянной С, если она является решением уравнения при любом значении постоянной С, и если при любых начальных условиях таких, что0 ; у 0 ) G , существует единственное значение постоянной С=С 0 такое, что функция у= ( х , С 0 ) удовлетворяет данным начальным условиям ( х 0 , С ) 0 .

Частным решением уравнения в области G называется функция у= ( х , С 0 ), которая получается из общего решения у= ( х , С ) при определенном значении постоянной С=С 0 .

Уравнения с разделяющимися переменными

Если ДУ− I имеет вид: Р ( х ) dx + Q ( y ) dy =0, в котором Р зависит только от х , а Q зависит только от у , то оно является ДУ− I с разделёнными переменными.

Общий интеграл уравнения с разделёнными переменными представляется уравнением:

Если ДУ− I имеет вид: X 1 Y 1 dy + X 2 Y 2 dx =0, в котором X 1 и X 2 зависят только от х , а Y 1 и Y 2 зависят только от у , то оно является ДУ− I с разделяющимися переменными и приводится к ДУ− I с разделёнными переменными. Процесс приведения называется разделением переменных.

Найти общее решение дифференциального уравнения первого порядка :

Итак, , где C = const – общее решение уравнения.

Найдём частное решение этого уравнения удовлетворяющее начальным условиям

(решим задачу Коши):

Итак, – частные решения уравнения, удовлетворяющие заданным условиям.

Итак, , где C = const – общее решение уравнения.


источники:

http://reshator.com/sprav/algebra/10-11-klass/differencialnye-uravneniya-s-razdelyayushchimisya-peremennymi-i-ih-integrirovanie/

http://infourok.ru/konspekt-zanyatiya-ponyatie-differencialnogo-uravneniya-differencialnye-uravneniya-pervogo-poryadka-s-razdelyayushimisya-peremen-4251943.html