Уравнение прямой, виды уравнения прямой на плоскости.
Эта статья является продолжением раздела прямая на плоскости. Здесь мы перейдем к алгебраическому описанию прямой линии с помощью уравнения прямой.
Материал данной статьи является ответом на вопросы: «Какое уравнение называют уравнением прямой и какой вид имеет уравнение прямой на плоскости»?
Навигация по странице.
Уравнение прямой на плоскости — определение.
Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и в ней задана прямая линия.
Прямая, как и любая другая геометрическая фигура, состоит из точек. В фиксированной прямоугольной системе координат каждая точка прямой имеет свои координаты – абсциссу и ординату. Так вот зависимость между абсциссой и ординатой каждой точки прямой в фиксированной системе координат, может быть задана уравнением, которое называют уравнением прямой на плоскости.
Другими словами, уравнение прямой на плоскости в прямоугольной системе координат Oxy есть некоторое уравнение с двумя переменными x и y , которое обращается в тождество при подстановке в него координат любой точки этой прямой.
Осталось разобраться с вопросом, какой вид имеет уравнение прямой на плоскости. Ответ на него содержится в следующем пункте статьи. Забегая вперед, отметим, что существуют различные формы записи уравнения прямой, что объясняется спецификой решаемых задач и способом задания прямой линии на плоскости. Итак, приступим к обзору основных видов уравнения прямой линии на плоскости.
Общее уравнение прямой.
Вид уравнения прямой в прямоугольной системе координат Oxy на плоскости задает следующая теорема.
Всякое уравнение первой степени с двумя переменными x и y вида , где А , В и С – некоторые действительные числа, причем А и В одновременно не равны нулю, задает прямую линию в прямоугольной системе координат Oxy на плоскости, и всякая прямая на плоскости задается уравнением вида
.
Уравнение называется общим уравнением прямой на плоскости.
Поясним смысл теоремы.
Заданному уравнению вида соответствует прямая на плоскости в данной системе координат, а прямой линии на плоскости в данной системе координат соответствует уравнение прямой вида
.
Посмотрите на чертеж.
С одной стороны можно сказать, что эта линия определяется общим уравнением прямой вида , так как координаты любой точки изображенной прямой удовлетворяют этому уравнению. С другой стороны, множество точек плоскости, определяемых уравнением
, дают нам прямую линию, приведенную на чертеже.
Общее уравнение прямой называется полным, если все числа А , В и С отличны от нуля, в противном случае общее уравнение прямой называется неполным. Неполное уравнение прямой вида определяют прямую, проходящую через начало координат. При А=0 уравнение
задает прямую, параллельную оси абсцисс Ox , а при В=0 – параллельную оси ординат Oy .
Таким образом, любую прямую на плоскости в заданной прямоугольной системе координат Oxy можно описать с помощью общего уравнения прямой при некотором наборе значений чисел А , В и С .
Нормальный вектор прямой, заданной общим уравнением прямой вида , имеет координаты
.
Все уравнения прямых, которые приведены в следующих пунктах этой статьи, могут быть получены из общего уравнения прямой, а также могут быть обратно приведены к общему уравнению прямой.
Рекомендуем к дальнейшему изучению статью общее уравнение прямой. Там доказана теорема, сформулированная в начале этого пункта статьи, приведены графические иллюстрации, подробно разобраны решения примеров на составление общего уравнения прямой, показан переход от общего уравнения прямой к уравнениям другого вида и обратно, а также рассмотрены другие характерные задачи.
Уравнение прямой в отрезках.
Уравнение прямой вида , где a и b – некоторые действительные числа отличные от нуля, называется уравнением прямой в отрезках. Это название не случайно, так как абсолютные величины чисел а и b равны длинам отрезков, которые прямая отсекает на координатных осях Ox и Oy соответственно (отрезки отсчитываются от начала координат). Таким образом, уравнение прямой в отрезках позволяет легко строить эту прямую на чертеже. Для этого следует отметить в прямоугольной системе координат на плоскости точки с координатами
и
, и с помощью линейки соединить их прямой линией.
Для примера построим прямую линию, заданную уравнением в отрезках вида . Отмечаем точки
и соединяем их.
Детальную информацию об этом виде уравнения прямой на плоскости Вы можете получить в статье уравнение прямой в отрезках.
Уравнение прямой с угловым коэффициентом.
Уравнение прямой вида , где x и y — переменные, а k и b – некоторые действительные числа, называется уравнением прямой с угловым коэффициентом ( k – угловой коэффициент). Уравнения прямой с угловым коэффициентом нам хорошо известны из курса алгебры средней школы. Такой вид уравнения прямой очень удобен для исследования, так как переменная y представляет собой явную функцию аргумента x.
Определение углового коэффициента прямой дается через определение угла наклона прямой к положительному направлению оси Ox .
Углом наклона прямой к положительному направлению оси абсцисс в данной прямоугольной декартовой системе координат Oxy называют угол , отсчитываемый от положительного направления оси Ох до данной прямой против хода часовой стрелки.
Если прямая параллельна оси абсцисс или совпадает с ней, то угол ее наклона считают равным нулю.
Угловой коэффициент прямой есть тангенс угла наклона этой прямой, то есть, .
Если прямая параллельна оси ординат, то угловой коэффициент обращается в бесконечность (в этом случае также говорят, что угловой коэффициент не существует). Другими словами, мы не можем написать уравнение прямой с угловым коэффициентом для прямой, параллельной оси Oy или совпадающей с ней.
Заметим, что прямая, определяемая уравнением , проходит через точку
на оси ординат.
Таким образом, уравнение прямой с угловым коэффициентом определяет на плоскости прямую, проходящую через точку
и образующую угол
с положительным направлением оси абсцисс, причем
.
В качестве примера изобразим прямую, определяемую уравнением вида . Эта прямая проходит через точку
и имеет наклон
радиан ( 60 градусов) к положительному направлению оси Ox . Ее угловой коэффициент равен
.
Отметим, что уравнение касательной к графику функции в точке очень удобно искать именно в виде уравнения прямой с угловым коэффициентом.
Рекомендуем продолжить изучение этой темы в разделе уравнение прямой с угловым коэффициентом. Там представлена более подробная информация, приведены графические иллюстрации, детально разобраны решения характерных примеров и задач.
Каноническое уравнение прямой на плоскости.
Каноническое уравнение прямой на плоскости в прямоугольной декартовой системе координат Oxy имеет вид , где
и
– некоторые действительные числа, причем
и
одновременно не равны нулю.
Очевидно, что прямая линия, определяемая каноническим уравнением прямой, проходит через точку . В свою очередь числа
и
, стоящие в знаменателях дробей, представляют собой координаты направляющего вектора этой прямой. Таким образом, каноническое уравнение прямой
в прямоугольной системе координат Oxy на плоскости соответствует прямой, проходящей через точку
и имеющей направляющий вектор
.
Для примера изобразим на плоскости прямую линию, соответствующую каноническому уравнению прямой вида . Очевидно, что точка
принадлежит прямой, а вектор
является направляющим вектором этой прямой.
Каноническое уравнение прямой вида используют даже тогда, когда одно из чисел
или
равно нулю. В этом случае запись
считают условной (так как содержится ноль в знаменателе) и ее следует понимать как
. Если
, то каноническое уравнение принимает вид
и определяет прямую, параллельную оси ординат (или совпадающую с ней). Если
, то каноническое уравнение прямой принимает вид
и определяет прямую, параллельную оси абсцисс (или совпадающую с ней).
Детальная информация об уравнении прямой в каноническом виде, а также подробные решения характерных примеров и задач собраны в статье каноническое уравнение прямой на плоскости.
Параметрические уравнения прямой на плоскости.
Параметрические уравнения прямой на плоскости имеют вид , где
и
– некоторые действительные числа, причем
и
одновременно не равны нулю, а
— параметр, принимающий любые действительные значения.
Параметрические уравнения прямой устанавливают неявную зависимость между абсциссами и ординатами точек прямой линии с помощью параметра (отсюда и название этого вида уравнений прямой).
Пара чисел , которые вычисляются по параметрическим уравнениям прямой при некотором действительном значении параметра
, представляет собой координаты некоторой точки прямой. К примеру, при
имеем
, то есть, точка с координатами
лежит на прямой.
Следует отметить, что коэффициенты и
при параметре
в параметрических уравнениях прямой являются координатами направляющего вектора этой прямой.
Для примера приведем параметрические уравнения прямой вида . Эта прямая в прямоугольной системе координат Oxy на плоскости проходит через точку с координатами
и имеет направляющий вектор
.
В статье параметрические уравнения прямой на плоскости Вы можете ознакомиться с подробным решением примеров и задач по этой теме.
Нормальное уравнение прямой.
Если в общем уравнении прямой вида числа А , В и С таковы, что длина вектора
равна единице, а
, то это общее уравнение прямой называется нормальным уравнением прямой. Нормальное уравнение прямой определяет в прямоугольной системе координат Oxy прямую линию, нормальным вектором которой является вектор
, причем эта прямая проходит на расстоянии
от начала координат в направлении вектора
.
Часто можно видеть другую форму записи нормального уравнения прямой: , где
и
— действительные числа, представляющие собой направляющие косинусы нормального вектора прямой единичной длины (то есть,
и справедливо равенство
), а величина p (
) равна расстоянию от начала координат до прямой.
Для примера приведем общее уравнение прямой . Это общее уравнение прямой является нормальным уравнением прямой, так как
и
. Оно в прямоугольной системе координат Oxy на плоскости задает прямую линию, нормальный вектор которой имеет координаты
, и эта прямая удаленна от начала координат на 3 единицы в направлении нормального вектора
.
Отметим, что уравнение прямой в нормальном виде позволяет находить расстояние от точки до прямой на плоскости.
Если в общем уравнении прямой числа А , В и С таковы, что уравнение
не является нормальным уравнением прямой, то его можно привести к нормальному виду. Об этом читайте в статье нормальное уравнение прямой.
Нормальное (нормированное) уравнение прямой: описание, примеры, решение задач
В данной статье рассмотрим нормальное уравнение прямой на заданной плоскости. Получим нормальное уравнение, покажем не примере, дадим определение нормирующего множителя и разберем приведение общего уравнения к нормальному виду. Заключительной части посвятим основному приложению нормального уравнения прямой, то есть нахождение расстояние от точки до прямой на плоскости.
Нормальное уравнение прямой – описание и пример
Рассмотрим выведение нормального уравнения.
Фиксируем на плоскости систему координат О х у , где задаем прямую с точкой, через которую она проходит с нормальным вектором прямой. Нормальному вектору прямой дадим обозначение n → . Его начало обозначено точкой O . координатами являются cos α и cos β , углы которых расположены между вектором n → и положительными осями О x и O y . Это запишется так: n → = ( cos α , cos β ) . Прямая проходит через точку A с расстоянием равным p , где p ≥ 0 от начальной точки O при положительном направлении вектора n → . Если р = 0 , тогда A считается совпадающей с точкой координат. Отсюда имеем, что O A = p . Получаем уравнение, при помощи которого задается прямая.
Имеем, что точка с координатами M ( x , y ) расположена на прямой тогда и только тогда, когда числовая проекция вектора O M → по направлению вектора n → равняется p , значит при выполнении условия n p n → O M → = p .
O M → является радиус-вектором точки с координатами M ( x , y ) , значит O M → = ( x , y ) .
Применив определение скалярного произведения векторов, получим равенство вида: n → , O M → = n → · n p n → O M → = 1 · n p n → O M → = n p n → O M → = p
Тогда это же произведение будет иметь вид в координатной форме: n → , O M → = cos α · x + cos β · y
Отсюда cos α · x + cos β · y = p или cos α · x + cos β · y — p = 0 . Было выведено нормальное уравнение прямой.
Уравнение вида cos α · x + cos β · y — p = 0 называется нормальным уравнением прямой или нормированным уравнением прямой. Иначе говоря, уравнение прямой в нормальном виде.
Понятно, что такое уравнение представляет собой общее уравнение прямой A x + B y + C = 0 , где A и B имеют значения, при которых длина вектора n → = ( A , B ) равна 1 , а C является неотрицательным числом.
Теперь рассмотрим его геометрический смысл. Нормальное уравнение прямой вида cos α · x + cos β · y — p = 0 задает в системе координат О х у на плоскости прямую с наличием нормального вектора единичной длины n → = ( cos α , cos β ) , которая располагается на расстоянии равном p от начала координат по положительному направлению вектора n → .
Если дано уравнение прямой вида — 1 2 · x + 3 2 · y — 3 = 0 , то на плоскости задается прямая, у которой нормальный вектор с координатами — 1 2 , 3 2 . Удаление прямой от начала координат идет по направлению, совпадающему с направлением нормального вектора n → = — 1 2 , 3 2 .
Приведение общего уравнения прямой к нормальному виду
Часто решение задач подразумевает использование нормального уравнения прямой, но само оно не дается в нормальном виде, поэтому необходимо для начала приводить к нормальному виду, после чего выполнять необходимые вычисления.
Нормальное уравнение получают из общего уравнения прямой. Когда на плоскости задается другим уравнением, то необходимо привести его к общему виду, после чего возможно приведение к нормальному. Если рассмотреть на примере, то это будет выглядеть так.
Для приведения общего уравнения прямой A x + B x + C = 0 к нормальному необходимо обе части умножить на нормирующий множитель, который имеет значение ± 1 A 2 + B 2 . Его знак определяется при помощи противоположности знака слагаемого C . При С = 0 знак выбирается произвольно.
Привести уравнение прямой 3 x — 4 y — 16 = 0 к нормальному виду.
Из общего уравнения видно, что А = 3 , В = — 4 , С = — 16 . Так как значение C отрицательное, необходимо брать положительный знак для формулы. Перейдем к вычислению нормирующего множителя:
1 A 2 + B 2 = 1 3 2 + ( — 4 ) 2 = 1 5
Теперь необходимо умножить обе части уравнения на одну пятую. Получим, что 1 5 · ( 3 x — 4 y — 16 ) = 0 ⇔ 3 5 · x — 4 5 · y — 16 5 = 0 .
Нормальное уравнение по заданной прямой найдено.
Ответ: 3 5 · x — 4 5 · y — 16 5 = 0 .
Нормальное уравнение прямой
В данной статье мы рассмотрим нормальное уравнение прямой на плоскости. Приведем примеры построения нормального уравнения прямой по углу наклона нормального вектора прямой от оси Ox и по расстоянию от начала координат до прямой. Представим метод приведения общего уравнения прямой к нормальному виду. Рассмотрим численные примеры.
Пусть на плоскости задана декартова прямоугольная система координат. Тогда нормальное уравнение прямой L на плоскости представляется следующей формулой:
xcosφ+ysinφ−r=0, | (1) |
где r− расстояние от начала координат до прямой L, а φ− это угол между нормальным вектором n прямой L и осью Ox. (Если r>0, то нормальный вектор n направлен в сторону прямой L).
Выведем формулу (1). Пусть на плоскости задана декартова прямоугольная система координат и прямая L (Рис.1). Проведем через начало координат прямую Q, перпендикулярную прямой L, и точку пересечения обозначим через R. На этой прямой выделим единичный вектор n, с направлением, совпадающим с вектором . (Если точки O и R совпадают, то направление n можно взять произвольным).
Выразим уравнение прямой L через два параметра: длину отрезка и угол φ между вектором n и осью Ox.
Так как вектор n является единичным вектором, то его проекции на Ox и Oy будут иметь следующие координаты:
n=<cosφ, sinφ>. | (2) |
Обозначим через r расстояние от начала координат до точки R. Рассмотрим, теперь, точку M(x,y). Точка M лежит на прямой L тогда и только тогда, когда проекция вектора на прямую R равна r, т.е.
(3) |
Скалярное произведение векторов n и имеет следующий вид:
(4) |
где − обозначен скалярное произведение векторов n и
, а | · |− норма (длина) вектора, α−угол между векторами n и
.
Поскольку n единичный вектор, то (4) можно записать так:
(5) |
Учитывая, что n=<cosφ, sinφ>, , мы получим:
(6) |
Тогда из уравнений (3), (5), (6) следует:
xcosφ+ysinφ=r |
xcosφ+ysinφ−r=0. | (7) |
Мы получили нормальное уравнение прямой L. Уравнение (7) (или (1)) называется также нормированным уравнением прямой .
Пример 1. Построить нормальное уравнение прямой, нормальный вектор которого с осью Ox имеет угол φ=60°, а расстояние от начала координат до прямой составляет 4.
Решение. Имеем: φ=60°, r=4. Вычисляем:
Подставляя вычисленные значения в (7) получим:
Приведение общего уравнения прямой на плоскости к нормальному виду
Так как уравнения (1) и (8) должны определять одну и ту же прямую (Замечание 1 статьи «Общее уравнение прямой на плоскости»), то существует такое число t, что
tAx=cosφ, tB=sinφ, tC=−r. | (9) |
Возвышая в квадрат первые два равенства в (9) и складывая их, получим:
(tA) 2 +(tB) 2 =cos 2 φ+sin 2 φ=1. | (10) |
Упростим выражение и найдем t:
t 2 A 2 +t 2 B 2 =t 2 (A 2 +B 2 )=1, |
(11) |
Знаменатель в (11) отличен от нуля, т.к. хотя бы один из коэффициентов A, B не равен нулю (в противном случае (8) не представлял бы уравнение прямой).
Выясним, какой знак имеет t. Обратим внимание на третье равенство в (9). Так как r−это расстояние от начала координат до прямой, то r≥0. Тогда произведение tC должна иметь отрицательный знак. Т.е. знак t в (11) должен быть противоположным знаку C.
Подставляя в (1) вместо cosφ, sinφ, и −r значения из (9), получим tAx+tBy+tC=0. Т.е. для приведения общего уравенения прямой к нормальному виду, нужно заданное уравнение умножить на множитель (11). Множитель (11) называется нормирующим множителем .
Пример 2. Задано общее уравнение прямой
Построить нормальное уравнение прямой.
Решение. Из уравнения (12) можно записать: A=2, B=−3, C=4. Вычислим t из равенства (11):
Так как C>0, то знак t отрицательный:
Умножим уравнение (12) на t:
Ответ. Нормальное уравнение прямой (12) имеет следующий вид:
Отметим, что число является расстоянием от начала координат до прямой (12).
http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/normalnoe-normirovannoe-uravnenie-prjamoj/
http://matworld.ru/analytic-geometry/normalnoe-uravnenie-prjamoj.php