14 уравнение равномерного движения потока распределение скоростей течения в потоки

Вопрос №20. Основное уравнение равномерного движения жидкости. Формула Шези.

Рассмотрим прямолинейное равномерное движение жидкости. Живые сечения в этом случае могут быть произвольной формы, но не должны изменяться по всей длине рассматриваемого участка. В таком потоке потери напора определяются лишь потерями по длине.

Выделим из потока участок жидкости длиной l и запишем уравнение Бернулли для сечений 1 и 2( рис. 32 )

z1 , z2 — ординаты центра тяжести сечений 1,2,

p1 , p2 — давление в центрах тяжести этих сечений,

v1 , v2 — средние скорости в этих сечениях,

h1-2 — потери напора по длине.

Так как движение равномерное, то v1 =v2 и уравнение можно переписать так:

. (1)

В случае равномерного движения разность удельных потенциальных энергий равна потере напора по длине.

Для вычисления этой разности напишем сумму проекций на ось А-А всех сил, действующих на участке 1-2. Эти силы следующие:

1) сила тяжести жидкости

,

2) силы давления на плоские сечения

, , ,

,

где t — сила трения на единицу площади смачиваемой поверхности

русла, c — смоченный периметр,

4) силы давления стенок на жидкость ( эти силы не подсчитываем, так как они параллельны оси А-Аи, следовательно, их проекции на ось А-А равны нулю ).

Спроектируем все эти силы на ось А-А:

.

.

Подставим выражение для сил в уравнение

.

Разделим обе части этого равенства на , имеем

. (2)

Сравнивая выражения (1) и (2), находим

,

.

Отношение площади живого сечения S к смоченному периметру c называется гидравлическим радиусом

.

Величина обозначается через i и называется гидравлическим уклоном.

.

Это уравнение называется основным уравнением равномерного движения.

Величина имеет размерность квадрата скорости

.

Выражение — называется динамической скоростью, обозначается v*

.

Формула Шези — формула для определения средней скорости потока при установившемся равномерном турбулентном движении жидкости в области квадратичного сопротивления для случая безнапорного потока. Опубликована французским инженером-гидравликом А. Шези (AntoinedeChézy, 1718–1798) в 1769 году. Применяется для расчётов потоков в речных руслах и канализационых системах.

,

где V — средняя скорость потока, м/с;

C — коэффициент сопротивления трения по длине (коэффициент Шези), являющийся интегральной характеристикой сил сопротивления;

R — гидравлический радиус, м;

I — гидравлический уклон м/м.

Формула Шези имеет то же предназначение, что и формула Дарси-Вейсбаха. Коэффициент потерь на трение связан с коэффициентом сопротивления С следующей зависимостью:

.

Коэффициент сопротивления C может быть определён по формуле Н. Н. Павловского:

где n — коэффициент шероховатости, характеризующий состояние поверхности русла, для случая канализационных труб принимается в диапазоне (0,012. 0,015); для других случаев nbsp;— информация приведена в литературе [1]

у — показатель степени, зависящий от величины коэффициента шероховатости и гидравлического радиуса:

Эта формула рекомендуется для значений R [2]

Дата добавления: 2015-04-18 ; просмотров: 161 ; Нарушение авторских прав

Равномерное движение жидкости

Равномерным потоком жидкости называют такой поток, в котором все частицы движутся равномерно и прямолинейно. В таком потоке все живые сечения будут плоскими и распределения скоростей по сечениям одинаковыми, т.е. (рис. 6.4).

Рис. 6.4. Профили скорости при равномерном движении жидкости

В равномерном потоке

Так как равномерное движение есть предельный случай плавноизменяющегося (см. параграф 4.13), то, следовательно, давление в живых сечениях потока при равномерном движении будет меняться по гидростатическому закону, т.е.

Удельная кинетическая энергия при равномерном движении

так как и , т.е. удельная кинетическая энергия во всех живых сечениях потока одинакова. Следовательно, вдоль равномерного потока уменьшается лишь потенциальная энергия, расходуемая на потери.

Так как все частицы жидкости в данном сечении обладают одинаковыми запасами удельной потенциальной энергии, то потеря энергии на любой линии тока между двумя сечениями одна и та же. Отсюда следует важный вывод, что в равномерном потоке гидравлический уклон

т. е. не зависит от расположения частицы от оси потока.

Проведем исследование равномерного потока с целью вывода основных уравнений, характеризующих его. При равномерном движении средние скорости во всех поперечных сечениях одинаковы, местные сопротивления отсутствуют, и существует лишь сопротивление трения, проявляющееся по длине трубопровода и вызывающее соответствующие потери напора.

Выведем сначала уравнение динамического равновесия. Для этого рассмотрим равномерный поток жидкости в цилиндрической трубе (рис. 6.5).

Рис. 6.5. Схема движения жидкости к выводу уравнения динамического равновесия

Выделим в потоке отсек длиной l с площадью поперечного сечения со. Контур, ограничивающий площадку, обозначим через(«хи»). Его обычно называют смоченным периметром.

Контур выберем концентрично по отношению к стенкам трубы.

На выделенный отсек действуют силы:

  • – тяжести ;
  • – гидродинамического давления ; , где p1 и p2 давления в соответствующих сечениях жидкости (Поскольку в равномерном потоке гидромеханические давления распределяются в сечении по линейному закону, то в этих формулах под p1 и р2 следует понимать давления, действующие в центре тяжести площадок ω1 и ω2);
  • – трения , где – боковая поверхность выделенного отсека.

Составим уравнение движения на направлении l. Так как силы инерции в равномерном потоке отсутствуют, получим

Так как , то

Поделив обе части уравнения наии учитывая, что , находим

Обозначив , где R – гидравлический радиус, будем иметь

(6.1)

Соотношение (6.1) представляет уравнение динамического равновесия равномерного потока.

Выведем уравнение энергии равномерного потока. Уравнение Бернулли для потока имеет вид

В равномерном потоке и , следовательно,

(6.2)

Объединяя уравнения (6.1) и (6.2), получим общее выражение для потери напора по длине потока:

Последнее уравнение называют основным уравнением равномерного потока. Этому уравнению можно придать несколько иной вид:

,

,

где – гидравлический уклон потока. Последние два соотношения также представляют основное уравнение равномерного потока.

Для касательного напряжения на стенке это уравнение принимает вид

Уравнение равномерного потока показывает, что напряжение силы трения, отнесенное к удельному весу жидкости, равно произведению гидравлического радиуса на гидравлический уклон.

Ламинарное движение жидкости

Определим основные закономерности ламинарного потока при равномерном движении в круглых трубах. При этом будем рассматривать участок стабилизированного течения, т.е. участок, на котором профиль скорости ламинарного потока полностью сформировался.

Ранее (см. параграф 6.1) было показано, что ламинарное течение имеет слоистый характер без перемешивания частиц. При этом имеют место только направления потока, параллельные оси трубы, при полном отсутствии поперечных движений жидкости. Скорость в слое, непосредственно соприкасающемся со стенками, вследствие прилипания жидкости к стенке (из-за вязкости жидкости) равна нулю. Максимального значения скорость достигает в слое, движущемся по оси трубы.

Для принятой схемы движения необходимо установить закон распределения скоростей в поперечном сечении потока, получить расчетные зависимости для определения расхода жидкости и потерь напора на трение по длине потока.

Рассмотрим ламинарный равномерный поток жидкости в трубе круглого сечения (рис. 6.6).

Основное уравнение равномерного потока имеет вид

(6.3)

По закону Ньютона для внутреннего трения

(6.4)

Рис. 6.6. Схема ламинарного равномерного потока

В трубе круглого сечения гидравлический радиус отсека потока с геометрическим радиусом r равен . Поскольку при ламинарном режиме течения жидкости в трубе векторы скорости симметричны относительно продольной оси, то за нормаль следует принять радиус отсека потока.

Знак «минус» взят потому, что при увеличении радиуса скорость убывает.

Уравнения (6.3) и (6.4) примут вид

Приравнивая правые части этих уравнений, находим

, или

Интегрируя, получаем (учитывая, что в равномерном потоке, т.е. не зависит от r)

Постоянная интегрирования С находится из граничных условий: при(скорость движения жидкости на стенке равна нулю). Тогда

(6.5)

Из полученного уравнения очевидно, что скорость в поперечном сечении потока изменяется по закону параболы (рис. 6.7).

Рис. 6.7. Профиль скорости и эпюра касательного напряжения при ламинарном движении жидкости

Максимальная скорость имеет место на оси трубы при r= 0. Тогда из последнего уравнения следует

Преобразуя формулу (6.5):

и учитывая формулу для, получаем

,

т.е. распределение безразмерных скоростей является лишь функцией безразмерной величины . Эта функция одинакова во всех случаях ламинарного движения любой жидкости внутри круглых труб. Следовательно, все рассматриваемые течения подобны независимо от числа Re. Такие явления называют автомодельными.

Полученную выше формулу для касательного напряжения

,

учитывая, что , можно записать в виде

,

Отсюда формула для принимает вид

Из этой формулы следует, что касательное напряжение является линейной функцией текущего радиуса трубы r. Максимальное значение т принимает на стенке трубы, минимальное () – в ее центре. Эпюра касательного напряжения представлена на рис. 6.7.

Изучение скоростей отдельных частиц жидкости по длине потока показывает, что на участке вблизи входа в трубопровод частицы движутся неравномерно. Частицы, расположенные вблизи оси потока, движутся ускоренно, а частицы, находящиеся у стенки, – замедленно. Поэтому эпюры скоростей в различных сечениях на этом участке трубопровода будут различными. На участке длиной lн будет происходить формирование профиля скорости ламинарного потока. Длина входного участка lн, на котором заканчивается формирование потока, называется длиной начального участка (рис. 6.8).

Рис. 6.8. Схема формирования профиля скорости ламинарного потока

Рассмотрим формирование ламинарного потока в трубопроводе, вход в который сделан плавным. Жидкость поступает в трубу с почти одинаковой скоростью по всему сечению, и только на стенке скорость жидкости равна нулю. По мере удаления от входа толщина затормаживаемого слоя жидкости у стенки увеличивается. Но так как расход жидкости Q остается одним и тем же, замедление слоев, расположенных у стенки, приводит к увеличению скорости слоев, расположенных ближе к оси трубы. Сформировавшемуся равномерному изотермическому ламинарному потоку жидкости в трубе соответствует параболический закон распределения скоростей. Такое распределение скоростей теоретически наступает лишь на расстоянии от входа в трубу, равном бесконечности. Но практически уже на конечных расстояниях от входа распределение скоростей мало отличается от параболического. Для ламинарного потока можно принять lн =0,28Red.

Формирование турбулентного потока происходит на длине lн =(40+50)d.

14 уравнение равномерного движения потока распределение скоростей течения в потоки

Гидродинамика — раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями.

Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.

Живым сечением ω (м²) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы — круг (рис.3.1, б); живое сечение клапана — кольцо с изменяющимся внутренним диаметром (рис.3.1, б).

Смоченный периметр χ («хи») — часть периметра живого сечения, ограниченное твердыми стенками (рис.3.2, выделен утолщенной линией).

Для круглой трубы

если угол в радианах, или

Расход потока Q — объем жидкости V, протекающей за единицу времени t через живое сечение ω.

Средняя скорость потока υ — скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω

Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

Гидравлический радиус потока R — отношение живого сечения к смоченному периметру

Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени

Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным

Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

Трубка тока — трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой.

Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное — течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.

Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением (рис.3.4). Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q1=Q2= const, откуда

Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:

Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P, средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач.

Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).

Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2. Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q.

Для измерения давления жидкости применяют пьезометры — тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту . В каждом сечении установлены пьезометры, в которых уровень жидкости поднимается на разные высоты.

Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито. Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии.

Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то мы получим ломаную линию (рис.3.5).

Однако высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0, называемой плоскостью сравнения, будет одинакова.

Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода.

Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:

Так как сечения 1-1 и 2-2 взяты произвольно, то полученное уравнение можно переписать иначе:

и прочитать так: сумма трех членов уравнения Бернулли для любого сечения потока идеальной жидкости есть величина постоянная.

С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:

z1 и z2 — удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2;
— удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях;
— удельные кинетические энергии в тех же сечениях.

Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна.

Уравнение Бернулли можно истолковать и чисто геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Глядя на рис.3.5, можно заметить, что z1 и z2 — геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; — пьезометрические высоты; — скоростные высоты в указанных сечениях.

В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная.

Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения

Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).

Потерянная энергия или потерянный напор обозначаются и имеют также линейную размерность.

Уравнение Бернулли для реальной жидкости будет иметь вид:

Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2.

Кроме этого в уравнении появились еще два коэффициента α1 и α2, которые называются коэффициентами Кориолиса и зависят от режима течения жидкости ( α = 2 для ламинарного режима, α = 1 для турбулентного режима ).

Потерянная высота складывается из линейных потерь, вызванных силой трения между слоями жидкости, и потерь, вызванных местными сопротивлениями (изменениями конфигурации потока)

Для измерения скорости в точках потока широко используется работающая на принципе уравнения Бернулли трубка Пито (рис.3.7), загнутый конец которой направлен навстречу потоку. Пусть требуется измерить скорость жидкости в какой-то точке потока. Поместив конец трубки в указанную точку и составив уравнение Бернулли для сечения 1-1 и сечения, проходящего на уровне жидкости в трубке Пито получим

где Н — столб жидкости в трубке Пито.

Для измерения расхода жидкости в трубопроводах часто используют расходомер Вентури, действие которого основано так же на принципе уравнения Бернулли. Расходомер Вентури состоит из двух конических насадков с цилиндрической вставкой между ними (рис.3.7). Если в сечениях I-I и II-II поставить пьезометры, то разность уровней в них будет зависеть от расхода жидкости, протекающей по трубе.

Пренебрегая потерями напора и считая z1 = z2 , напишем уравнение Бернулли для сечений I-I и II-II:

Выражение, стоящее перед , является постоянной величиной, носящей название постоянной водомера Вентури.

Из полученного уравнения видно, что h зависит от расхода Q. Часто эту зависимость строят в виде тарировочной кривой h от Q, которая имеет параболический характер.


источники:

http://studme.org/33932/tovarovedenie/ravnomernoe_dvizhenie_zhidkosti

http://gidravl.narod.ru/osnovdin.html

Читайте также:
  1. Grand sissonne owerte без продвижения
  2. Grand sissonne owerte без продвижения
  3. II.Четыре главных средства продвижения
  4. Re – Рейнольдс саны) формуласында l нені білдіреді
  5. V2:4 Новые религиозные движения и нетрадиционные религии
  6. А9. ОЦЕНКА И АНАЛИЗ ЭФФЕКТИВНОСТИ ФИРМЫ. ФОРМУЛА ДЮПОНА
  7. Автобус как средство передвижения. Организация автобусных туров, их география, известные туроператоры.
  8. Агрегатные состояния вещества. Характер теплового движения в этих состояниях. Особенности теплового движения в различных агрегатных состояниях вещества.
  9. Адиабатный процесс. Уравнение адиабаты идеального газа. Работа идеального газа при адиабатическом изменении его объема.
  10. Акты международных организаций по экономическим вопросам.