Решение задач с помощью систем линейных уравнений
Алгоритм решения задачи с помощью системы линейных уравнений
- Обозначить неизвестные величины переменными («от смысла к буквам»).
- По условию задачи записать уравнения, связывающие обозначенные переменные.
- Решить полученную систему уравнений.
- Истолковать результат в соответствии с условием задачи («от букв к смыслу»).
Задуманы два числа. Если от первого отнять второе, то получается 10. Если к первому прибавить удвоенное второе, то получается 91. Найдите задуманные числа.
«От смысла к буквам»:
Пусть x и y — задуманные числа.
Уравнения по условию задачи::
Решение системы уравнений:
«От букв к смыслу»:
Задуманы числа 37 и 27.
Примеры
Пример 1. Периметр прямоугольника равен 48 см. Его длина больше ширины в 3 раза.
Найдите стороны прямоугольника.
Пусть a и b — длина и ширина прямоугольника.
$$ <\left\< \begin
Ответ: длина прямоугольника 18 см, ширина 6 см.
Пример 2. Два программиста из Бомбея, работающие в одном проекте, написали 100500 строк кода. Первый работал 70 дней, второй – 100 дней. Сколько строк писал каждый программист ежедневно, если за первые 30 дней первый написал на 5550 строк больше, чем второй?
Пусть x — ежедневное количество строк для 1-го программиста, y- для 2-го.
$$ <\left\< \begin
$$ \Rightarrow (+) <\left\< \begin
Ответ: 700 строк и 515 строк
Пример 3. За 2 кг конфет и 3 кг печенья заплатили 1540 руб. Сколько стоит 1 кг конфет и 1 кг печенья, если 2 кг печенья дороже 1 кг конфет на 210 руб.?
Пусть x — цена за 1 кг конфет, y — за 1 кг печенья.
$$ <\left\< \begin
Ответ: 1 кг конфет — 350 руб. и 1 кг печенья — 280 руб.
Пример 4. Катер за 3 ч движения против течения реки и 2 часа по течению проходит 73 км. Найдите собственную скорость катера и скорость течения, если за 4 ч движения по течению катер проходит на 29 км больше, чем за 3 ч движения против течения.
Пусть v — скорость катера (км/ч), u — скорость течения (км/ч).
$$ \Rightarrow <\left\< \begin
Ответ: скорость катера 15 км/ч и скорость течения 2 км/ч
Пример 5. 5 карандашей и 3 тетрадки вместе стоили 170 руб. После того, как карандаши подешевели на 20%, а тетрадки подорожали на 30%, за 3 карандаша и 5 тетрадок заплатили 284 руб. Найдите первоначальную цену карандаша и тетрадки.
Пусть x – первоначальная цена карандаша, y — тетрадки.
$$ <\left\< \begin
Ответ: карандаш сначала стоил 10 руб., тетрадка — 40 руб.
Пример 6*. Велосипедист планирует добраться из пункта А в пункт В. Если он будет ехать на 3 км/ч быстрее, чем обычно, он доберётся на 1 час раньше. А если он будет ехать на 2 км/ч медленней, чем обычно, то – на 1 час позже. Найдите обычную скорость велосипедиста и время поездки при этой скорости.
Пусть v – обычная скорость велосипедиста (км/ч), t — обычное время (ч).
Расстояние между А и В неизменно, и по условию равно:
Ответ: обычная скорость 12 км/ч, время 5 ч
Пример 7*. В одной бочке налито 12 л, во второй – 32 л. Если первую бочку доверху наполнить водой из второй, то вторая бочка будет наполнена ровно наполовину своего объёма. Если вторую бочку доверху наполнить водой из первой, то первая бочка будет наполнена на 1/6 своего объёма. Найдите объём каждой бочки.
Пусть x — объём первой бочки (л), y – объём второй (л).
Пусть a л перелито из второй бочки, и первая наполнилась до краёв, а во второй воды осталось наполовину:
Теперь пусть b л перелито из первой бочки, и вторая наполнилась до краёв, а в первой воды осталось на 1/6:
$$ <\left\< \begin
Ответ: первая бочка 24 л, вторая – 40 л
Пример 8*. Если школьник едет в школу на автобусе, а возвращается домой пешком, то он тратит на всю дорогу полтора часа. Если он едет туда и обратно на автобусе, то он тратит полчаса. Сколько времени потратит школьник, если он пойдёт туда и обратно пешком?
Пусть s — расстояние между домом и школой, v — скорость автобуса, u — скорость школьника, t — искомое время, потраченное на дорогу туда и обратно пешком.
По условию задачи:
Из второго уравнения $ \frac
И тогда искомое время:
$$ t = \frac<2s>
Задачи на составление уравнений и их систем (ЕГЭ)
Задачи по подготовке к ЕГЭ на составление уравнений и их систем
Просмотр содержимого документа
«Задачи на составление уравнений и их систем (ЕГЭ)»
РЕШЕНИЕ ЗАДАЧ НА СОСТАВЛЕНИЕ
УРАВНЕНИЙ И ИХ СИСТЕМ
В решении задач на составление уравнений (систем уравнений) обычно можно выделить три этапа:
1) выбор неизвестного и составление уравнения (или системы уравнений);
2) решение полученного уравнения (или системы уравнений);
3) проверка решений по условию задачи.
Критерии оценивания задания 22 ОГЭ.
Рассмотрим отдельные типы задач и их решение с помощью уравнений или систем уравнений. Обратим внимание на виды краткой записи условий задач.
1. Задачи на числовые зависимости
При решении задач на числовые зависимости могут оказаться полезными следующие сведения:
если к натуральному числу х приписать справа n-значное число y, то в результате получится число 10 n ∙ x + y;
если при делении натурального числа A на натуральное число B в частном получается g, а в остатке r (r ), то A = Bg + r.
Задача 1. Если двузначное число разделить на произведение его цифр, то в частном получится 3, а в остатке 8. Если число, составленное из тех же цифр, но записанных в обратном порядке, разделить на произведение цифр, то в частном получится 2, а в остатке 5. Найти это число.
Решение. Пусть в искомом числе: x – цифра десятков, x N, ;
y – цифра единиц, y N, .
Тогда 10x + y – искомое число;
10y + x – число, составленное из тех же цифр, но записанных в обратном порядке.
Используя третье, из выше указанных сведений, составим систему уравнений.
Вторая пара корней не удовлетворяет условию задачи.
2. Задачи на движение
Задача 2. Катер прошел против течения реки 8 км, повернул обратно и прошел по течению 36 км. Весь рейс длился 2 ч. Потом катер прошел против течения 6 км и по течению 33 км, затратив на этот второй рейс 1 ч 45 мин. Найдите скорость катера в стоячей воде.
Решение. Краткую запись условия задач на движение часто удобно выполнять в виде таблицы, в столбцах которой указываются путь, скорость и время для каждого этапа движения.
Где x км/ч – скорость катера в стоячей воде,
y км/ч – скорость течения (x 0, y 0, x y), 1 ч 45 мин = 7/4 ч.
На основе таблицы составим систему уравнений.
Решим систему выполняя замену переменных.
3. Задачи на совместную работу
В задачах на совместную работу часто объем всей работы, которая должна быть выполнена, принимается за единицу. Если t – время, требующееся для выполнения всей работы, а V – производительность труда, т.е. величина работы, выполняемая за единицу времени, то V = 1/t .
Задача 3. Двое рабочих выполнили вместе некоторую работу за 12 ч. Если бы сначала первый рабочий сделал половину этой работы, а затем другой остальную часть, то вся работа была бы выполнена за 25 ч. За какое время мог бы выполнить эту работу каждый рабочий в отдельности?
Решение. Примем объем всей работы за единицу.
Пусть x ч, y ч – время необходимое на выполнение всей работы соответственно 1-му и 2 -му рабочим в отдельности (12 50, 12 50).
Тогда – производительность (часть всей работы, выполняемая за 1 ч) соответственно 1-го и 2-го рабочих;
– часть всей работы, выполняемая соответственно 1-м и
2-м рабочими за 12 ч;
ч,
ч – время, необходимое на выполнение половины всей работы соответственно1-му и 2-му рабочим в отдельности.
Условие задачи можно записать и в виде таблицы, аналогичной таблице из задачи 2, заменив путь, скорость и время движения на соответственно объем, производительность и время работы.
Пусть x ч, y ч – время необходимое на выполнение всей работы соответственно 1-му и 2 -му рабочим в отдельности (12 50, 12 50).
На основе выполненных рассуждений составим систему уравнений.
Ответ: 20 ч, 30 ч.
Задача 4. (ЕГЭ-2008) Двое рабочих, работая вместе, могут за 1 ч установить 10 м забора. Первый рабочий, работая отдельно, устанавливает 60 м забора на 5 ч дольше, чем 60 м такого же забора может установить второй рабочий. За сколько часов второй рабочий может установить 90 м забора? Ответ: 15 ч.
4. Задачи на проценты, доли и смеси
Определение. Процентом называется сотая доля числа.
Задача 5. Имелось два сплава меди с разным процентным содержанием меди в каждом. Затем их сплавили вместе, после чего содержание меди составило 36%. Число, выражающее в процентах содержание меди в первом сплаве, на 40 меньше числа, выражающего в процентах содержание меди во втором сплаве. Определить процентное содержание меди в каждом сплаве, если в первом сплаве меди было 6 кг, а во втором – 12 кг.
Решение. Краткую запись условия выполним в виде таблицы.
Состав | Количество | Количество |