16 система линейных уравнений ax b несовместна rga 10 чему равен rg a b

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение систем линейных алгебраических уравнений (СЛАУ)
Метод Гаусса, матричный метод, метод Крамера, исследование на совместность (теорема Кронекера-Капелли), определение количества решений, нахождение нормальной фундаментальной системы решений.

С помощью данной математической программы вы можете решить и исследовать систему линейных алгебраических уравнений (СЛАУ).

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Ввод дробного числа в виде десятичной дроби.
При вводе десятичной дроби, целую часть от дробной части можно отделять точкой или запятой :
Ввод: -2.34
Результат: \( -2<,>34 \)

Ввод: -1,15
Результат: \( -1<,>15 \)

Ввод дробного числа в виде обыкновенной дроби.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: $$ -\frac<2> <3>$$

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 5&8/3
Результат: $$ 5\frac<8> <3>$$
Помните, что на ноль делить нельзя!

RND CFracNum Fill RND int Fill Start MathJax
Сюда ввести строку с GET параметрами :

Немного теории.

Системы линейных алгебраических уравнений

Основные определения

Система \(m\) линейных алгебраических уравнений с \(n\) неизвестными (сокращенно СЛАУ) представляет собой систему вида
\( \left\< \begin a_<11>x_1 + a_<12>x_2 + \cdots + a_<1n>x_n = b_1 \\ a_<21>x_1 + a_<22>x_2 + \cdots + a_<2n>x_n = b_2 \\ \cdots \\ a_x_1 + a_x_2 + \cdots + a_x_n = b_m \end \right. \tag <1>\)

Уравнения системы называют алгебраическими потому, что левая часть каждого из них есть многочлен от \(n\) переменных \( x_1 , \ldots x_n \), а линейными потому, что эти многочлены имеют первую степень.

Числа \(a_ \in \mathbb \) называют коэффициентами СЛАУ. Их нумеруют двумя индексами: номером уравнения \(i\) и номером неизвестного \(j\). Действительные числа \( b_1 , \ldots b_m \) называют свободными членами уравнений.

СЛАУ называют однородной, если \( b_1 = b_2 = \ldots = b_m = 0 \). Иначе её называют неоднородной.

Решением СЛАУ, да и вообще всякой системы уравнений, называют такой набор значений неизвестных \( x_1^\circ, \ldots , x_n^\circ \), при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ также называют её частным решением.

Решить СЛАУ — значит решить две задачи:
— выяснить, имеет ли СЛАУ решения;
— найти все решения, если они существуют.

СЛАУ называют совместной, если она имеет какие-либо решения. В противном случае её называют несовместной. Однородная СЛАУ всегда совместна, поскольку нулевой набор значений её неизвестных всегда является решением.

Если СЛАУ (1) имеет решение, и притом единственное, то её называют определенной, а если решение неединственное — то неопределенной. При \(m=n\), т.е. когда количество уравнений совпадает с количеством неизвестных, СЛАУ называют квадратной.

Формы записи СЛАУ

Кроме координатной формы (1) записи СЛАУ часто используют и другие её представления.

Рассматривая коэффициенты \(a_\) СЛАУ при одном неизвестном \(x_j\) как элементы столбца, а \(x_j\) как коэффициент, на который умножается столбец, из (1) получаем новую форму записи СЛАУ:
\( \begin a_ <11>\\ a_ <21>\\ \vdots \\ a_ \end x_1 + \begin a_ <12>\\ a_ <22>\\ \vdots \\ a_ \end x_2 + \ldots + \begin a_ <1n>\\ a_ <2n>\\ \vdots \\ a_ \end x_n = \begin b_1 \\ b_2 \\ \vdots \\ b_m \end \)
или, обозначая столбцы соответственно \( a_1 , \ldots , a_n , b \),
\( x_1 a_1 + x_2 a_2 + \ldots + x_n a_n = b \tag <2>\)

Таким образом, решение СЛАУ (1) можно трактовать как представление столбца \(b\) в виде линейной комбинации столбцов \( a_1, \ldots, a_n \). Соотношение (2) называют векторной записью СЛАУ.

Поскольку \(A \;,\; X\) и \(B\) являются матрицами, то запись СЛАУ (1) в виде \(AX=B\) называют матричной. Если \(B=0\), то СЛАУ является однородной и в матричной записи имеет вид \(AX=0\).

Приведенные рассуждения показывают, что задачи :
а) решения СЛАУ (1)
б) представления столбца в виде линейной комбинации данных столбцов
в) решения матричных уравнений вида \(AX=B\)
являются просто различной формой записи одной и той же задачи.

Критерий совместности СЛАУ

«Триединство» форм записи СЛАУ позволяет легко получить критерий совместности СЛАУ. Напомним, что содержательный смысл это понятие имеет для неоднородных СЛАУ (однородные СЛАУ всегда совместны).

Матрицу
\( A = \begin a_ <11>& a_ <12>& \cdots & a_ <1n>\\ a_ <21>& a_ <22>& \cdots & a_ <2n>\\ \vdots & \vdots & \ddots & \vdots \\ a_ & a_ & \cdots & a_ \end \)
называют матрицей (коэффициентов) СЛАУ (1), а матрицу
\( (A|B) = \left( \begin a_ <11>& a_ <12>& \cdots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \cdots & a_ <2n>& b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_ & a_ & \cdots & a_ & b_m \end \right) \)
расширенной матрицей СЛАУ (1). Расширенная матрица полностью характеризует СЛАУ. Это означает, что по этой матрице однозначно (если сохранить обозначения для неизвестных) восстанавливается сама СЛАУ.

Теорема Кронекера-Капелли. Для совместности СЛАУ \(AX=B\) необходимо и достаточно, чтобы ранг её матрицы \(A\) был равен рангу её расширенной матрицы \( (A|B) \).

Формулы Крамера

Теорема. СЛАУ с квадратной невырожденной матрицей имеет решение, и притом единственное, которое определяется по формулам Крамера :
$$ x_i = \frac<\Delta_i> <|A|>\;,\quad i=\overline <1,n>\tag <3>$$
где \(\Delta_i\) — определитель матрицы, получающейся из матрицы \(A\) заменой \(i\)-го столбца на столбец свободных членов.

Следствие. Однородная СЛАУ с квадратной невырожденной матрицей имеет единственное решение — нулевое.

Если матрица СЛАУ не является квадратной невырожденной, то формулы Крамера не работают и приходится использовать другие методы нахождения решений.

Однородные системы

Теорема. Если столбцы \( X^<(1)>, X^<(2)>, \ldots , X^ <(s)>\) — решения однородной СЛАУ \(AX=0\), то любая их линейная комбинация также является решением этой системы.

Следствие. Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечно много решений.

Естественно попытаться найти такие решения \( X^<(1)>, \ldots , X^ <(s)>\) системы \(AX=0\), чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом. Оказывается, что это всегда возможно и приводит к следующему определению.

Определение. Любой набор из \(k=n-r\) линейно независимых столбцов, являющихся решениями однородной СЛАУ \(AX=0\), где \(n\) — количество неизвестных в системе, а \(r\) — ранг её матрицы \(A\), называют фундаментальной системой решений этой однородной СЛАУ.

При исследовании и решении однородных систем линейных алгебраических уравнений будем использовать следующую терминологию. Если в матрице \(A\) однородной СЛАУ \(AX=0\) фиксировать базисный минор, то ему соответствуют базисные столбцы и, следовательно, набор неизвестных, отвечающих этим столбцам. Указанные неизвестные называют базисными, или зависимыми, а остальные неизвестные — свободными, или независимыми.

Теорема. Пусть дана однородная СЛАУ \(AX=0\) с \(n\) неизвестными и \( \textA = r \). Тогда существует набор из \(k=n-r\) решений \( X^<(1)>, \ldots , X^ <(k)>\) этой СЛАУ, образующих фундаментальную систему решений.

Если в фундаментальной системе решений все значения независимых неизвестных равны нулю, кроме одного, которое равно единице, то такую систему решений называют фундаментальной нормальной системой решений.

Следствие. С помощью нормальной фундаментальной системы решений однородной СЛАУ множество всех решений можно описать формулой :
$$ X = c_1X^ <(1)>+ \ldots + c_kX^ <(k)>$$
где постоянные \( c_i \;, \quad i=\overline <1,k>\), принимают произвольные значения.

Следствие. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы её матрица была вырождена.

Неоднородные системы

Рассмотрим произвольную СЛАУ \(AX=B\). Заменив столбец \(B\) свободных членов нулевым, получим однородную СЛАУ \(AX=0\), соответствующую неоднородной СЛАУ \(AX=B\). Справедливо следующее утверждение о структуре произвольного решения неоднородной СЛАУ.

Теорема. Пусть столбец \(X^\circ\) — некоторое решение СЛАУ \(AX=B\). Произвольный столбец \(X\) является решением этой СЛАУ тогда и только тогда, когда он имеет представление \(X = X^\circ + Y \), где \(Y\) — решение соответствующей однородной СЛАУ \(AY=0\).

Следствие. Пусть \(X’\) и \(X»\) — решения неоднородной системы \(AX=B\). Тогда их разность \( Y = X’ — X» \) является решением соответствующей однородной системы \(AY=0\).

Эта теорема сводит проблему решения СЛАУ к случаю однородной системы: чтобы описать все решения неоднородной СЛАУ, достаточно энать одно её решение (частное решение) и все решения соответствующей однородной СЛАУ.

Чтобы решить неоднородную систему, надо, во-первых, убедиться, что она совместна (например, по теореме Кронекера-Капелли), а во-вторых, найти частное решение \(X^\circ\) этой системы, чтобы свести её к однородной системе.

Теорема о структуре общего решения СЛАУ. Пусть \(X^\circ\) — частное решение СЛАУ \(AX=B\) и известна фундаментальная система решений \( X^<(1)>, \ldots , X^ <(k)>\) соответствующей однородной системы \(AX=0\). Тогда любое решение СЛАУ \(AX=B\) можно представить в виде $$ X = X^\circ + c_1 X^ <(1)>+ c_2 X^ <(2)>+ \ldots + c_k X^ <(k)>$$
где \( c_i \in \mathbb \;, \quad i=\overline <1,k>\).
Эту формулу называют общим решением СЛАУ.

ЭКЗАМЕНАЦИОННАЯ ПРОГРАММА

ЛИНЕЙНАЯ АЛГЕБРА

ИнЭИ

1 семестр, 2 2 , 2019/20 20 уч. год

ЭКЗАМЕНАЦИОННАЯ ПРОГРАММА

1. Матрицы. Виды матриц. Равенство матриц, сложение, умножение матрицы на число. Основные свойства.

2. Умножение матриц и его свойства. Транспонирование матриц и его свойства.

3. Определители. Свойства определителей.

4. Обратная матрица. Единственность. Существование и вычисление обратной матрицы (через построение присоединенной матрицы).

5. Ранг матрицы. Элементарные преобразования строк матрицы. Теорема о том, что элементарные преобразования не меняют ранга.

6. Приведение матрицы к ступенчатому виду элементарными преобразованиями. Ранг ступенчатой матрицы.

7. Пространство R n арифметических векторов. Линейно зависимые и независимые векторы.

8. Критерий линейной зависимости векторов R n . Следствие из этой теоремы. Понятие базиса.

9. Теоремы о базисах в R n . Стандартный базис.

10. Теорема о базисном миноре.

11. Системы линейных уравнений. Метод Гаусса.

12. Квадратные системы линейных уравнений. Формулы Крамера.

13. Однородные системы линейных уравнений. Условия нетривиальной совместности. Свойства решений.

14. Фундаментальная система решений однородной системы. Структура общего решения.

15. Неоднородные системы. Структура общего решения. Теорема Кронекера–Капелли.

16. Геометрические векторы. Коллинеарность и компланарность. Равенство векторов. Арифметические действия с векторами. Координаты вектора в декартовой системе координат.

17. Скалярное произведение векторов и его свойства. Вычисление через координаты в прямоугольной системе координат. Критерий перпендикулярности.

18. Векторное произведение векторов и его свойства. Вычисление через координаты в прямоугольной системе координат. Критерий коллинеарности.

19. Смешанное произведение векторов. Вычисление через координаты в прямоугольной системе координат. Критерий компланарности.

20. Общее уравнение плоскости. Геометрический смысл коэффициентов. Взаимное расположение пары плоскостей.

21. Каноническое и параметрическое уравнения прямой. Прямая как пересечение плоскостей. Взаимное расположение пары прямых.

22. Взаимное расположение прямой и плоскости в пространстве.

23. Линейные пространства. Размерность и базис. Подпространства.

24. Примеры линейных пространств.

25. Евклидовы пространства. Неравенство Коши–Буняковского.

26. Процесс ортогонализации и существование в евклидовом пространстве ортонормированных базисов.

27. Линейный оператор и его матрица. Матричная форма записи линейного оператора.

28. Образ, ядро, ранг и дефект оператора.

29. Изменение координат вектора и матрицы оператора при переходе к другому базису.

30. Сопряженный и самосопряженный операторы. Матрицы этих операторов в ортонормированном базисе.

31. Собственные векторы и собственные значения линейных операторов и их свойства.

32. Характеристический многочлен и его инвариантность.

33. Собственные базисы. Существование собственного ортонормированного базиса у самосопряженного оператора.

34. Квадратичная форма и ее матрица. Приведение к каноническому виду ортогональным преобразованием. Закон инерции.

35. Уравнения кривых 2-го порядка в канонических системах координат. Классификация.

36. Уравнения поверхностей 2-го порядка в канонических системах координат (основные типы).

1.Используя формулы Крамера, решить систему уравнений:

2. Решить систему уравнений:

3.Дан вектор . Найти матрицу оператора в базисе .

4. Определить тип кривой 2-го порядка:

.

5. Чему равен фокальный параметр параболы:

6.Можно ли столбцы матрицы принять за базис в R 4 ??

7. Вектор компланарен плоскости, проходящей через точки А(1,0,2) и В(2,7,3). Составить общее уравнение этой плоскости.

8. Найти фундаментальную систему решений системы уравнений:

9.Дан оператор , где . Доказать, что оператор линеен, и найти его матрицу в базисе .

10.Решить систему уравнений:

11. Выяснить, существует ли такая матрица третьего порядка, для которой верно равенство:

12. Решить неравенство:

13.В пространстве функций, заданных на даны четыре функции:

Является ли они линейно независимыми?

14. Указать хотя бы один базис в подпространстве:

R n .

15. В треугольнике с вершинами O(0,0,0), A(7,3,–5), B(–5,7,3) проведена биссектриса A О B. Написать ее каноническое уравнение.

16. Система линейных уравнений AX = B несовместна, RgA=10. Чему равен Rg(A/B)?

17. В базисе оператор А задан матрицей

Может ли образ ненулевого вектора быть ортогональным самому вектору ?

18. Векторы , , отложены от начала системы координат. Написать общее уравнение плоскости, проходящей через их концы.

19. Найти собственные значения оператора, заданного матрицей

20. Найти все векторы, координаты которых не меняются при переходе от базиса к базису .

21. Скалярное произведение векторов и , заданных в стандартном базисе , равно 5. Чему равно их скалярное произведение в базисе

?

22. Оператор задан своей матрицей Показать, что векторы и являются его собственными векторами и найти их собственные значения.

23. Привести квадратичную форму

к каноническому виду ортогональным преобразованием (само преобразование не указывать).

24. Линейная система пяти уравнений с семью неизвестными AX = B такова, что RgA=5. Доказать, что она совместна при любой правой части В.

25.Векторы и – собственные векторы оператора А с собственными значениями 2 и 3 соответственно. Будет ли собственным вектор ?

26.Оператор А в базисе имеет матрицу Верно ли, что оператор А самосопряжен?

Система линейных уравнений. Общее решение

Система линейных уравнений (СЛУ) может быть записана в виде

где m, n натуральные числа, aij (i= 1,2, . m, j= 1,2. n) называются коэффициентами, bi (i= 1,2. m) называются свободными членами, xi (i= 1,2. n) называются неизвестными.

Систему линейных уравнений (1) можно записать в виде

где A матрица порядка m×n , x — вектор порядка n (x∈R n ), b — вектор порядка m (b ∈R m ).

Решением системы (2) называется выбор такого вектора x’, что выполнено равенство

Если система линейных уравнений имеет хотя бы одно решение, то СЛУ называется совместным.

Если СЛУ не имеет решения, то СЛУ называется несовместным.

Если СЛУ имеет единственное решение, то СЛУ называется определенным.

Если СЛУ имеет более одного решения, то СЛУ называется неопределенным.

Система линейных уравнений (2) называется неоднородной cистемой линейных уравнений, если b≠0.

Система линейных уравнений (2) называется однородной cистемой линейных уравнений, если b=0.

Нахождение общего решения системы линейных уравнений

Общее решение системы линейных уравнений (1)((или (2))− это множество всех решений этой системы.

Пусть A m×n — матрица rankA=r. В общем случае можем предположить что r .

Применяя метод исключения Гаусса для системы (3), получим:

где M1 верхняя треугольная матрица, 0 — нулевые матрицы соответствующих порядков. Далее, применяя обратный ход исключения Гаусса, и, далее, разделив элементы каждой строки на ведущий элемент этой строки (если ведущий элемент существует) получим:

где E — единичная матрица порядка r×r.

Запишем (5) в виде системы линейных уравнений:

где

Решим систему линейных уравнений (6). Для этого перезапишем в следующем виде:

Из второго уравнения системы (7) следует, что для совместности системы (6) и, следовательно, (2) (или (1)) должно выполняться условие b2»≡ 0. Если система совместна, то решаем первое уравнение системы (7) относительно вектора xr:

(8)

Таким образом первые r координаты вектора x выражены через остальные координаты . — свободные координаты, т.е. могут принимать любые значения.

Найдем, далее, множество всех векторов x, удовлетворяющих уравнению (6) и, следовательно, (2)( или (1)).

Рассмотрим множество всех векторов х, удовлетворяющих условию

(9)

где λ — произвольный вектор-столбец длины n-r.

Подставляя (9) в (6) получим:

Следовательно (9) является решением системы (6) и, следовательно, (2)(или (1)). Отметим что вектор является частным решением неоднородной системы линейных уравнений Ax=b, а является общим решением однородной системы линейных уравнений Ax=0;

Нахождение общего решения системы линейных уравнений с помощью псевдообратной матрицы

Обозначим через R(A) пространство столбцов матрицы A, т.е.

1. Пусть A n×n матрица и rank(A)=n. Тогда существует обратная к A матрица A -1 , и следовательно единственное решение СЛУ (2) примет вид:

Действительно, подставляя (3) в (2) имеем:

2. Пусть A m×n − матрица, rank(A)=r.


источники:

http://megaobuchalka.ru/16/37246.html

http://matworld.ru/linear-equations.php