19 дифференциальные уравнения высших порядков допускающие понижение порядка и их решение

Дифференциальные уравнения, допускающие понижение порядка

Материал данной статьи дает представление о дифференциальных уравнениях порядка выше второго с возможностью понизить порядок, используя замену. Подобные уравнения часто представлены F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 , не содержащими искомой функции и производных до k – 1 порядка, а также дифференциальными уравнениями записи F ( y , y ‘ , y » , . . . , y ( n ) ) = 0 , не содержащими независимой переменной.

Понижение порядка дифференциальных уравнений, не содержащих искомой функции и производных до
k – 1 порядка вида F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0

Мы имеем возможность понижения порядка дифференциального уравнения F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 до n – k , используя замену переменных y ( k ) = p ( x ) . Осуществив подобную замену, имеем: y ( k + 1 ) = p ‘ ( x ) , y ( k + 2 ) = p » ( x ) , . . . , y ( n ) = p ( n — k ) ( x ) . Затем подставим полученный результат в исходное уравнение и увидим дифференциальное уравнение порядка n – k с неизвестной функцией p ( x ) .

После нахождения p ( x ) функцию y ( x ) найдем из равенства y ( k ) = p ( x ) интегрированием k раз подряд.

Для наглядности разберём решение такой задачи.

Задано дифференциальное уравнение 4 y ( 4 ) — 8 y ( 3 ) + 3 y » = 0 . Необходимо найти его общее решение.

Решение

Произведя замену y » = p ( x ) , получим возможность понизить порядок дифференциального уравнения с четвертого до второго. Итак, y ( 3 ) = p ‘ , y ( 4 ) = p » , и, таким образом, исходное уравнение четвертого порядка мы преобразуем в линейное однородное дифференциальное уравнение второго порядка, имеющее постоянные коэффициенты 4 p » — 8 p ‘ + 3 p = 0 .

Характеристическое уравнение будет записано так: 4 k 2 — 8 k + 3 = 0 , а корни его — k 1 = 1 2 и k 2 = 3 2 , тогда общим решением дифференциального уравнения 4 p » — 8 p ‘ + 3 p = 0 будет p ( x ) = C 1 · e 1 2 x + C 2 · e 3 2 x .

Проинтегрируем два раза полученный результат и можем записать необходимое нам общее решение дифференциального уравнения четвертого порядка:

y » = p ( x ) ⇒ y ‘ = ∫ p ( x ) d x = ∫ C 1 · e 1 2 x + C 2 · e 3 2 x d x = = 2 C 1 · e 1 2 x + 2 3 C 2 · e 3 2 x + C 3 ⇒ y = ∫ y ‘ d x = ∫ 2 C 1 · e 1 2 x + 2 3 C 2 · e 3 2 x + C 3 d x = = 4 C 1 · e 1 2 x + 4 9 C 2 · e 3 2 x + C 3 · x + C 4

Ответ: y = 4 C 1 · e 1 2 x + 4 9 C 2 · e 3 2 x + C 3 · x + C 4 ( С 1 , С 2 , С 3 и С 4 являются произвольными постоянными).

Задано общее дифференциальное уравнение третьего порядка y ‘ ‘ ‘ · x · ln ( x ) = y » . Необходимо найти его общее решение.

Решение

Осуществим замену y » = p ( x ) , следовательно, y ‘ ‘ ‘ = p ‘ , а заданное дифференциальное уравнение третьего порядка преобразуется в дифференциальное уравнение, имеющее разделяющиеся переменные записи p ‘ · x · ln ( x ) = p .

Осуществим разделение переменных и интегрирование:

d p p = d x x ln ( x ) , p ≠ 0 ∫ d p p = ∫ d x x ln ( x ) ∫ d p p = ∫ d ( ln ( x ) ) ln ( x ) ln p + C 1 = ln ln ( x ) + C 2

Последующее потенцирование с учетом того, что p ( x ) = 0 тоже является решением, даст нам возможность получить общее решение дифференциального уравнения p ‘ · x · ln ( x ) = p в записи p ( x ) = C · ln ( x ) , в которой C будет произвольной постоянной.

Поскольку в самом начале была использована замена y » = p ( x ) , то y ‘ = ∫ p ( x ) d x тогда: y ‘ = C · ∫ ln ( x ) d x . Задействуем метод интегрирования по частям:

y ‘ = C · ∫ ln ( x ) d x = u = ln ( x ) , d v = d x d u = d x x , v = x = = C · x · ln ( x ) — ∫ x d x x = C · ( x · ln ( x ) — x ) + C 3

Произведем интегрирование повторно для получения общего решения заданного дифференциального уравнения третьего порядка:
y = ∫ y ‘ d x = ∫ C · x · ln ( x ) — x + C 3 d x = = C · ∫ x · ln ( x ) d x — C · ∫ x d x + C 3 · ∫ d x = = C · ∫ x · ln ( x ) d x — C · x 2 2 + C 3 · x = = u = ln x , d v = x d x d u = d x x , v = x 2 2 = = C · x 2 2 · ln x — ∫ x d x 2 — C · x 2 2 + C 3 · x + C 4 = = C · x 2 ln ( x ) 2 — 3 x 2 4 + C 3 · x + C 4

Ответ: y = C · x 2 ln ( x ) 2 — 3 x 2 4 + C 3 · x + C 4 ( С , С 3 и С 4 являются произвольными постоянными).

Понижение порядка дифференциальных уравнений, не содержащих независимую переменную, записи F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0

Теперь рассмотрим дифференциальные уравнения F ( y , y ‘ , y » , . . . , y ( n ) ) = 0 , не имеющие в своей записи независимую переменную.

В данном случае снижение порядка на единицу возможно с использованием замены d y d x = p ( y ) . Опираясь на правило дифференцирования сложных функций, получим:

d 2 y d x 2 = d p d y d y d x = d p d y p ( y ) d 3 y d x 3 = d d p d y p ( y ) d x = d 2 p d y 2 d y d x p ( y ) + d p d y d p d y d y d x = = d 2 p d y 2 p 2 ( y ) + d p d y 2 p ( y ) . . .

Подставив результат в заданное уравнение, получаем дифференциальное уравнение с порядком ниже на единицу.

Рассмотрим данный алгоритм в решении конкретной задачи.

Задано дифференциальное уравнение 4 y 3 y » = y 4 — 1 и начальные условия: y ( 0 ) = 2 , y ‘ ( 0 ) = 1 2 2 . Необходимо найти частное решение заданного уравнения.

Решение

Заданное уравнение не имеет в своем составе независимую переменную x , следовательно, мы можем снизить порядок уравнения на единицу, используя замену d y d x = p ( y ) .

Тогда d 2 y d x 2 = d p d y · p ( y ) . Произведем подстановку и получим дифференциальное уравнение с разделяющимися переменными 4 y 3 · d p d y · p ( y ) = y 4 — 1 .

4 y 3 · d p d y · p ( y ) = y 4 — 1 ⇔ p ( y ) d p = y 4 — 1 4 y 3 d y , y ≠ 0 ∫ p ( y ) d p = ∫ y 4 — 1 4 y 3 d y p 2 ( y ) 2 + C 1 = y 2 8 + 1 8 y 2 + C 2 p 2 ( y ) = 1 4 y 4 + 8 C y 2 + 1 y 2 , C = C 2 — C 1 P ( y ) = ± 1 2 y 4 + 8 C y 2 + 1 y 2

Поскольку d y d x = p ( y ) , тогда y ‘ = ± 1 2 y 4 + 8 C y 2 + 1 y 2 .

Этап решения позволяет найти константу C , задействовав начальные условия y ( 0 ) = 2 , y ‘ ( 0 ) = 1 2 2 :

y ‘ ( 0 ) = ± 1 2 y 4 ( 0 ) + 8 C y 2 ( 0 ) + 1 y 2 ( 0 ) 1 2 2 = ± 1 2 2 4 + 8 C 2 2 + 1 2 1 2 2 = ± 1 2 5 + 16 C 2 1 = ± 5 + 16 C

Крайнее равенство дает возможность сформулировать вывод:

C = — 1 4 ,а y ‘ = — 1 2 y 4 + 8 C y 2 + 1 y 2 не удовлетворяет условиям задачи.

y ‘ = 1 2 y 4 + 8 C y 2 + 1 y 2 = 1 2 y 4 + 8 · — 1 4 y 2 + 1 y 2 = = 1 2 y 4 + 2 y 2 + 1 y 2 = 1 2 ( y 2 — 1 2 ) y 2 = 1 2 y 2 — 1 y

При y 2 — 1 y ≥ 0 ⇔ y ∈ — 1 ; 0 ∪ [ 1 ; + ∞ ) получаем y ‘ = 1 2 · y 2 — 1 y , откуда

2 y d y y 2 — 1 = d x ∫ 2 y d y y 2 — 1 = ∫ d x ∫ d ( y 2 — 1 ) y 2 — 1 = ∫ d x ln ( y 2 — 1 ) + C 3 = x + C 4 y 2 — 1 = e x + C 3 = x + C 4 y 2 — 1 = x + C 1 , C 5 + C 4 — C 2 y = ± e x + C 5 + 1

Область значений функции y = — e x + C 5 + 1 — это ( — ∞ , — 1 ] , и такой интервал не будет удовлетворять условию y 2 — 1 y ≥ 0 ⇔ y ∈ — 1 ; 0 ∪ [ 1 ; + ∞ ) , а значит y = — e x + C 5 + 1 не рассматриваем.

Обратимся к начальному условию y ( 0 ) = 2 :

y ( 0 ) = e 0 + C 5 + 1 2 = e 0 + C 5 + 1 2 = e C 5 + 1 С 5 = 0

Таким образом, y = e x + C 5 + 1 = e x + 0 + 1 = e x + 1 — необходимое нам частное решение.

При у 2 — 1 y 0 ⇔ y ∈ — ∞ ; — 1 ∪ 0 ; 1 получим y ‘ = — 1 2 · y 2 — 1 y , откуда y = ± e x + C 5 + 1 . Область значений функции y = e — x + C 5 + 1 — интервал [ 1 , + ∞ ) , и такой интервал не будет удовлетворять условию y 2 — 1 y 0 ⇔ y ∈ — ∞ ; — 1 ∪ 0 ; 1 , тогда y = e — x + C 5 + 1 не рассматриваем.

Для функции y = e — x + C 5 + 1 начальное условие y ( 0 ) = 2 не будет удовлетворяться ни для каких С 6 , поскольку

Дифференциальные уравнения, допускающие понижение порядка

Рассмотрим три частных случая решения дифференциальных уравнений с возможностью понижения порядка. Во всех случаях понижение порядка производится с помощью замены переменной. То есть, решение дифференциального уравнения сводится к решению уравнения более низкого порядка. В основном мы рассмотрим способы понижения порядка дифференциальных уравнений второго порядка, однако их можно применять многократно и понижать порядок уравнений изначально более высокого порядка. Так, в примере 2 решается задача понижения порядка дифференциального уравнения третьего порядка.

Понижение порядка уравнения, не содержащего y и y

Это дифференциальное уравнение вида . Произведём замену переменной: введём новую функцию и тогда . Следовательно, и исходное уравнение превращается в уравнениие первого порядка

с искомой функцией .

Решая его, находим . Так как , то .

Отсюда, интегрируя ещё раз, получаем решение исходного уравнения:

,

где и — произвольные константы интегрирования.

Пример 1. Найти общее решение дифференциального уравнения

.

Решение. Произведём замену переменной, как было описано выше: введём функцию и, таким образом, понизив порядок уравнения, получим уравнение первого порядка . Интегрируя его, находим . Заменяя на и интегрируя ещё раз, находим общее решение исходного дифференциального уравнения:

Пример 2. Решить дифференциальное уравнение третьего порядка

.

Решение. Дифференциальное уравнение не содержит y и y‘ в явном виде. Для понижения порядка применяем подстановку:

.

Тогда и получаем линейное дифференциальное уравнение первого порядка:

.

Заменяя z произведением функций u и v , получим

Тогда получим выражения с функцией v :

Выражения с функцией u :

Дважды интегрируем и получаем:

.

.

Интегрируем по частям и получаем:

.

Итак, общее решение данного дифференциального уравения:

.

Понижение порядка уравнения, не содержащего y

Это дифференциальное уравнение вида . Произведём замену переменной как в предыдущем случае: введём , тогда , и уравнение преобразуется в уравнение первого порядка . Решая его, найдём . Так как , то . Отсюда, интегрируя ещё раз, получаем решение исходного уравнения:

,

где и — произвольные константы интегрирования.

Пример 3. Найти общее решение дифференциального уравнения

.

Решение. Уже знакомым способом произведём замену переменной: введём функцию и понизим порядок уравнения. Получаем уравнение первого порядка . Решая его, находим . Тогда и получаем решение исходного дифференциального уравнения второго порядка:

.

Пример 4. Решить дифференциальное уравнение

.

Решение. Дифференциальное уравнение не содержит y в явном виде. Поэтому для понижения порядка применяем подстановку:

.

Получим дифференциальное уравнение первого порядка:

.

Это уравение с разделяющимися переменными. Решим его:

Интегрируем полученную функцию:

Мы пришли к цели — общему решению данного дифференциального уравения:

.

Пример 5. Найти общее решение дифференциального уравнения

.

Решение. Дифференциальное уравнение не содержит y в явном виде. Поэтому для понижения порядка применяем подстановку:

.

Получим дифференциальное уравнение первого порядка:

.

Это однородное уравение, которое решается при помощи подстановки . Тогда , :

Далее потребуется интегрировать по частям. Введём обозначения:

Таким образом, получили общее решение данного дифференциального уравения:

.

Понижение порядка уравнения, не содержащего x

Это уравнение вида . Вводим новую функцию , полагая . Тогда

.

Подставляя в уравнение выражения для и , понижаем порядок уравнения. Получаем уравнение первого порядка относительно z как функции от y:

.

Решая его, найдём . Так как , то . Получено дифференциальное уравнение с разделяющимися переменными, из которого находим общее решение исходного уравнения:

,

где и — произвольные константы интегрирования.

Пример 6. Найти общее решение дифференциального уравнения

.

Решение. Полагая и учитывая, что , получаем . Понизив порядок исходного уравнения, получаем уравнение первого порядка с разделяющимися переменными. Приводя его к виду и интегрируя, получаем , откуда . Учитывая, что , находим , откуда получаем решение исходного дифференциального уравнения второго порядка:

.

При сокращении на z было потеряно решение уравнения , т.е. . В данном случае оно содержится в общем решении, так как получается из него при (за исключением решения y = 0).

Пример 7. Найти общее решение дифференциального уравнения

.

Решение. Дифференциальное уравнение не содержит x в явном виде. Для понижения порядка применяем подстановку:

.

Получим дифференциальное уравнение первого порядка:

.

Это уравение с разделяющимися переменными. Решим его:

Используя вновь подстановку

,

получим ещё одно уравнение с разделяющимися переменными. Решим и его:

Таким образом, общее решение данного дифференциального уравения:

.

Пример 8. Найти частное решение дифференциального уравнения

,

удовлетворяющее начальному условию y(0) = 1 , y‘(0) = −1 .

Решение. Дифференциальное уравнение не содержит x в явном виде. Поэтому применяем подстановку:

.

Таким образом, понизили порядок уравнения и получили уравнение первого порядка

.

Это дифференциальное уравнение с разделяющимися переменными. Разделяем переменные и интегрируем:

Чтобы определить C 1 , используем данные условия y(0) = 1 , y‘(0) = −1 или p(0) = −1 . В полученное выражение подставим y = 1 , p = −1 :

.

.

Разделяя переменные и интегрируя, получаем

.

Из начального условия y(0) = 1 следует

.

Получаем окончательное решение данного дифференциального уравнения

.

Пример 9. Найти частное решение дифференциального уравнения

,

удовлетворяющее начальному условию y(1) = 1 , y‘(1) = −1 .

Решение. Дифференциальное уравнение не содержит x в явном виде. Для понижения порядка применяем подстановку:

.

Таким образом, получили уравнение первого порядка

.

Это дифференциальное уравнение с разделяющимися переменными. Разделив обе части уравнения на p , получим

Интегрируем обе части уравнения

Используем начальные условия и определим C 1 . Если x = 1 , то y = 1 и p = y‘ = −1 , поэтому

.

Из начального условия y(1) = 1 следует

.

Получаем окончательное решение данного дифференциального уравнения

.

Дифференциальные уравнения высших порядков

Дифференциальные уравнения высших порядков, решаемые в квадратурах

Уравнения, содержащие переменную и старшую производную

Разрешенные относительно старшей производной

Рассмотрим дифференциальное уравнение следующего вида:
.
Интегрируем n раз.
;
;
и так далее. Так же можно использовать формулу:
.
См. Дифференциальные уравнения, решающиеся непосредственным интегрированием

Разрешенные относительно переменной

Рассмотрим дифференциальное уравнение, в котором независимая переменная x является функцией от старшей производной:
.
Это уравнение можно решить параметрическим методом. Для этого вводим параметр . В результате получаем:
;
.
Из последнего уравнения . Интегрируя, получаем зависимость производной от x в параметрическом виде:
.
Продолжая интегрирование аналогичным образом, получим зависимость y от x в параметрическом виде.

Общий случай

Рассмотрим дифференциальное уравнение, содержащее только независимую переменную и старшую производную общего вида:
.
Его можно решить в квадратурах в параметрическом виде, если удастся подобрать такие функции и , для которых .

Если такие функции найдены, то положим . Тогда исходное уравнение выполняется автоматически. Дифференцируя первую функцию, находим связь между дифференциалами переменных x и t : . Тогда
.
Интегрируя последнее соотношение, получаем решение для производной более низкого порядка в параметрическом виде. Продолжая действовать подобным способом, получим общее решение в квадратурах.

Уравнения, содержащие только производные порядков n и n-1

Рассмотрим дифференциальное уравнение, содержащее только производные n-го и n-1-го порядков:
.
Его можно решить в квадратурах, если удастся найти такие функции и , которые удовлетворяют уравнению
.
Тогда положим
.
Считаем, что такое параметрическое представление эквивалентно исходному уравнению .

Тогда
;
.
Интегрируя эти уравнения, получим параметрическое представление производной порядка n – 2 . Продолжая подобным образом, получаем выражения остальных производных и самой функции y через параметр t .
Подробнее, см. здесь.

Уравнения, содержащие только производные порядков n и n-2

Рассмотрим дифференциальное уравнение, содержащее только производные n-го и n-2-го порядков:
.
Его можно решить в квадратурах, если удастся найти такие функции и , которые удовлетворяют уравнению
.
Положим
.
Считаем, что такое параметрическое представление эквивалентно исходному уравнению.

Тогда
;
;
;
;
.
Интегрируя, получим параметрическое представление производных порядка n, n – 1 и n – 2 . Далее интегрируем как в предыдущем случае ⇑. В результате получаем выражения остальных производных и самой функции y через параметр t .
Подробнее, см. здесь.

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Уравнения, не содержащие зависимую переменную y в явном виде

Подстановка приводит к понижению порядка уравнения на единицу. Здесь – функция от .
См. Дифференциальные уравнения высших порядков, не содержащие функцию в явном виде

Уравнения, не содержащие независимую переменную x в явном виде

Для решения этого уравнения, делаем подстановку
.
Считаем, что является функцией от . Тогда
.
Аналогично для остальных производных. В результате порядок уравнения понижается на единицу.
См. Дифференциальные уравнения высших порядков, не содержащие переменную в явном виде

Однородные дифференциальные уравнения высших порядков

Уравнения, однородные относительно функции и ее производных

Дифференциальное уравнение

является однородным относительно функции и ее производных, если оно обладает свойством:
.
Здесь t – число или любая функция; число p называют показателем однородности.

Чтобы распознать такое уравнение, нужно сделать замену
.
Если после преобразований t сократится, то это однородное уравнение.

Для его решения делаем подстановку
,
где – функция от . Тогда
.
Аналогично преобразуем производные и т.д. В результате порядок уравнения понижается на единицу.
См. Однородные относительно функции и ее производных дифференциальные уравнения высших порядков

Обобщенно однородные уравнения относительно переменных

Теперь рассмотрим дифференциальные уравнения, которые не меняют вида, если сделать замену переменных: , где c – постоянная; s – измерение однородности для переменной y. При такой замене производная порядка m умножается на :
.
Если записать исходное уравнение в общем виде:
,
то оно является обобщенно однородным относительно переменных, если обладает свойством:
,
где t – число или любая функция; p – показатель однородности.

При подобные уравнения можно назвать однородными дифференциальными уравнениями относительно переменных.

Порядок такого уравнения можно понизить на единицу, если искать решение в параметрическом виде, и перейти от зависимой переменной (функции) y к новой зависимой переменной (новой функции) с помощью подстановок:
, где t – параметр.
В результате для функции получим дифференциальное уравнение n — го порядка, которое не содержит переменную t в явном виде. Далее понижаем порядок изложенным выше методом ⇑.
См. Обобщенно однородные дифференциальные уравнения относительно переменных высших порядков

Дифференциальные уравнения с полной производной

Это уравнения, которые можно привести к полной производной:
.
Отсюда сразу получаем первый интеграл:
.
Он представляет собой дифференциальное уравнение, на единицу меньшего порядка по сравнению с исходным уравнением .

В качестве примера рассмотрим дифференциальное уравнение второго порядка:
.
Разделим его на . Тогда
.
Отсюда получаем первый интеграл, который является дифференциальным уравнением первого порядка:
.
См. Дифференциальные уравнения высших порядков с полной производной.

Линейные дифференциальные уравнения высших порядков

Рассмотрим линейное однородное дифференциальное уравнение n-го порядка:
(1) ,
где – функции от независимой переменной . Пусть есть n линейно независимых решений этого уравнения. Тогда общее решение уравнения (1) имеет вид:
(2) ,
где – произвольные постоянные. Сами функции образуют фундаментальную систему решений.
Фундаментальная система решений линейного однородного уравнения n-го порядка – это n линейно независимых решений этого уравнения.

Рассмотрим линейное неоднородное дифференциальное уравнение n-го порядка:
.
Пусть есть частное (любое) решение этого уравнения. Тогда общее решение имеет вид:
,
где – общее решение однородного уравнения (1).

Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним

Линейные однородные уравнения с постоянными коэффициентами

Это уравнения вида:
(3) .
Здесь – действительные числа. Чтобы найти общее решение этого уравнения, нам нужно найти n линейно независимых решений , которые образуют фундаментальную систему решений. Тогда общее решение определяется по формуле (2):
(2) .

Ищем решение в виде . Получаем характеристическое уравнение:
(4) .

Если это уравнение имеет различные корни , то фундаментальная система решений имеет вид:
.

Если имеется комплексный корень
,
то существует и комплексно сопряженный корень . Этим двум корням соответствуют решения и , которые включаем в фундаментальную систему вместо комплексных решений и .

Кратным корням кратности соответствуют линейно независимых решений: .

Кратным комплексным корням кратности и их комплексно сопряженным значениям соответствуют линейно независимых решений:
.

Линейные неоднородные уравнения со специальной неоднородной частью

Рассмотрим уравнение вида
,
где – многочлены степеней s 1 и s 2 ; – постоянные.

Сначала мы ищем общее решение однородного уравнения (3). Если характеристическое уравнение (4) не содержит корень , то ищем частное решение в виде:
,
где
;
;
s – наибольшее из s 1 и s 2 .

Если характеристическое уравнение (4) имеет корень кратности , то ищем частное решение в виде:
.

После этого получаем общее решение:
.

Линейные неоднородные уравнения с постоянными коэффициентами

Здесь возможны три способа решения.

1) Метод Бернулли.
Сначала находим любое, отличное от нуля, решение однородного уравнения
.
Затем делаем подстановку
,
где – функция от переменной x . Получаем дифференциальное уравнение для u , которое содержит только производные от u по x . Выполняя подстановку , получаем уравнение n – 1 — го порядка.

2) Метод линейной подстановки.
Сделаем подстановку
,
где – один из корней характеристического уравнения (4). В результате получим линейное неоднородное уравнение с постоянными коэффициентами порядка . Последовательно применяя такую подстановку, приведем исходное уравнение к уравнению первого порядка.

3) Метод вариации постоянных Лагранжа.
В этом методе мы сначала решаем однородное уравнение (3). Его решение имеет вид:
(2) .
Далее мы считаем, что постоянные являются функциями от переменной x . Тогда решение исходного уравнения имеет вид:
,
где – неизвестные функции. Подставляя в исходное уравнение и накладывая на некоторые ограничения, получаем уравнения, из которых можно найти вид функций .

Уравнение Эйлера

Оно сводится к линейному уравнению с постоянными коэффициентами подстановкой:
.
Однако, для решения уравнения Эйлера, делать такую подстановку нет необходимости. Можно сразу искать решение однородного уравнения в виде
.
В результате получим такие же правила, как и для уравнения с постоянными коэффициентами, в которых вместо переменной нужно подставить .

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 13-06-2017 Изменено: 11-05-2021


источники:

http://function-x.ru/differential_equations6.html

http://1cov-edu.ru/differentsialnye-uravneniya/vysshih-poryadkov/