2 основные положения молекулярно кинетической теории мкт идеальных газов основное уравнение

Основные положения МКТ

Молекулярно-кинетическая теория – это учение о строении и свойствах вещества, основанное на представлении о существовании атомов и молекул, как наименьших частиц химических веществ.

Основные положения молекулярно кинетической теории строения вещества

Основные положения молекулярно-кинетической теории молекулы:

  1. Все вещества могут быть в жидком, твердом и газообразном состоянии. Они образуются из частиц, которые состоят из атомов. Элементарные молекулы могут иметь сложное строение, то есть иметь в своем составе несколько атомов. Молекулы и атомы – электрически нейтральные частицы, которые в определенных условиях приобретают дополнительный электрический заряд и переходят в положительные или отрицательные ионы.
  2. Атомы и молекулы движутся непрерывно.
  3. Частицы с электрической природой силы взаимодействуют друг с другом.

Основные положения мкт и их примеры были перечислены выше. Между частицами имеется малое гравитационное воздействие.

Рисунок 3 . 1 . 1 . Траектория Броуновской частицы.

Броуновское движение молекул и атомов подтверждает существование основных положений молекулярно кинетической теории и опытно обосновывает его. Данное тепловое движение частиц происходит с взвешенными в жидкости или газе молекулами.

Опытное обоснование основных положений молекулярно кинетической теории

В 1827 году Р. Броун открыл это движение, которое было обусловлено беспорядочными ударами и перемещениями молекул. Так как процесс происходил хаотично, то удары не могли уравновесить друг друга. Отсюда вывод, что скорость броуновской частицы не может быть постоянной, она постоянно меняется, а движение направления изображается в виде зигзага, показанное на рисунке 3 . 1 . 1 .

О броуновском движении говорил еще А. Эйнштейн в 1905 году. Его теория нашла подтверждение в опытах Ж. Перрена 1908 — 1911 гг.

Следствие из теории Эйнштейна: квадрат смещения r 2 > броуновской частицы относительно начального положения, усредненное по многим броуновским частицам, пропорционален времени наблюдения t .

Выражение r 2 > = D t объясняет диффузионный закон. По теории имеем, что D монотонно возрастает с увеличением температуры. Беспорядочное движение проглядывается при наличии диффузии.

Диффузия – это определение явления проникновения двух или нескольких соприкасающихся веществ друг в друга.

Данный процесс происходит быстро в неоднородном газе. Благодаря примерам диффузии с разными плотностями можно получить однородную смесь. При нахождении в одном сосуде кислорода O 2 и водорода H 2 с перегородкой то при ее удалении газы начинают смешиваться, образую опасную смесь. Процесс возможен при нахождении вверху водорода, а внизу кислорода.

Процессы взаимопроникновения также протекают в жидкостях, но намного медленней. Если растворить твердое тело, сахар, в воде, то получим однородный раствор, который является наглядным примером диффузионных процессов в жидкостях. При реальных условиях смешивание в жидкостях и в газах замаскировано быстрыми процессами перемешивания, к примеру, при возникновении конвекционных потоков.

Диффузия твердых тел отличается своей замедленной скоростью. Если поверхность взаимодействия металлов очистить, то можно увидеть, что с течением большого периода времени в каждом из них появятся атомы другого металла.

Диффузия и броуновское движение считаются родственными явлениями.

При взаимопроникновении частиц обоих веществ движение беспорядочно, то есть, наблюдается хаотичное тепловое перемещение молекул.

Броуновское движение

Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы имеют в своем составе положительные и отрицательные заряды. При больших расстояниях преобладают силы межмолекулярного притяжения, при небольших – силы отталкивания.

Рисунок 3 . 1 . 2 показывает зависимость результирующей силы F и потенциальной энергии E р взаимодействия между молекулами от расстояния между их центрами. На расстоянии r = r 0 сила взаимодействия обращается в ноль. Данное расстояние условно принимается в качестве диаметра молекулы. При r = r 0 потенциальная энергия взаимодействия минимальная.

Чтобы отдалить две молекулы с расстоянием r 0 , следует сообщить E 0 , называемую энергией связи или глубиной потенциальной ямы.

Рисунок 3 . 1 . 2 . Сила взаимодействия F и потенциальная энергия взаимодействия E р двух молекул. F > 0 – сила отталкивания, F 0 – сила притяжения.

Так как молекулы имеют малые размеры, то простые одноатомные могут быть не более 10 – 10 м . Сложные могут достигать размеров в сотни раз больше.

Беспорядочное хаотичное движение молекул называют тепловым движением.

При возрастании температуры увеличивается кинетическая энергия теплового движения. При пониженных температурах средняя кинетическая энергия, в большинстве случаев, оказывается меньше значения глубины потенциальной ямы E 0 . Данный случай показывает, что молекулы перетекают в жидкое или твердое вещество со средним расстоянием между ними r 0 . Если температура повышается, то средняя кинетическая энергия молекулы превышает E 0 , тогда они разлетаются и образуют газообразное вещество.

В твердых телах молекулы двигаются беспорядочно около фиксированных центров, то есть, положений равновесий. В пространстве может быть распределены нерегулярным образом (у аморфных тел) или с образованием упорядоченных объемных структур (кристаллических тел).

Агрегатные состояния веществ

Свобода теплового движения молекул просматривается в жидкостях, так как у них нет привязки к центрам, что позволяет производить перемещения по всему объему. Этим объясняется ее текучесть.

Если молекулы располагаются близко, то могут образовывать упорядоченные структуры с несколькими молекулами. Данное явление получило название ближнего порядка. Дальний порядок характерен для кристаллических тел.

Расстояние в газах между молекулами намного больше, поэтому действующие силы малы, а их движения идут вдоль прямой, ожидая очередного соударения. Значение 10 – 8 м является средним расстоянием между молекулами воздуха в нормальных условиях. Так как взаимодействие сил слабое, газы расширяются и могут заполнять любой объем сосуда. Когда их взаимодействие стремится к нулю, то говорят о представлении идеального газа.

Кинетическая модель идеального газа

В мкт количество вещества считается пропорциональным числу частиц.

Моль – это количество вещества, содержащее столько частиц (молекул), сколько содержится атомов в 0 , 012 к г углерода C 12 . Молекула углерода состоит из одного атома. Отсюда следует, что 1 моль вещества имеет одно и то же количество молекул. Данное число называется постоянной Авогадро N А : N А = 6 , 02 ċ 1023 м о л ь – 1 .

Формула определения количества вещества ν записывается отношением N числа частиц на постоянную Авогадро N A : ν = N N A .

Массой одного моля вещества называют молярную массу М . Она фиксируется в виде формулы M = N А ċ m 0 .

Выражение молярной массы производится в килограммах на моль ( к г / м о л ь ) .

Если вещество имеет в составе один атом, тогда имеет место говорить об атомной массе частицы. Единица атома – это 1 12 массы изотопа углерода C 12 , называется атомной единицей массы и записывается как (а. е. м.): 1 а . е . м . = 1 , 66 ċ 10 – 27 к г .

Данная величина совпадает с массой протона и нейтрона.

Отношение массы атома или молекулы данного вещества к 1 12 массы атома углерода называют относительной массой.

2 основные положения молекулярно кинетической теории мкт идеальных газов основное уравнение

Идеальный газ — это просто!

Идеальный газ

Идеальный газ — это физическая модель газа, взаимодействие между молекулами которого пренебрежительно мало.
Понятие «идеальный газ» вводится для математического описания поведения газов.
Реальные разреженные газы ведут себя как идеальный газ!

Свойства идеального газа:
— взаимодействие между молекулами пренебрежительно мало
— расстояние между молекулами много больше размеров молекул
— молекулы — это упругие шары
— отталкивание молекул возможно только при соударении
— движение молекул — по законам Ньютона
— давление газа на стенки сосуда — за счет ударов молекул газа

Скорость молекул газа

В теории газов скорость молекул принято определять через среднее значение квадрата скорости молекул.
Хотя скорости различных молекул сильно отличаются друг от друга, но среднее значение квадрата скорости молекул есть величина постоянная.

Формула для расчета среднего значения квадрата скорости молекул газа:

где
n — число молекул в газе
v — модули скоростей отдельных молекул в газе

В теории газов часто используется понятие кинетической энергии молекул.
Используя среднее значение квадрата скорости молекул, получаем формулу для определения средней кинетической энергии молекул:

Основное уравнение МКТ газа

Основное уравнение МКТ связывает микропараметры частиц (массу молекулы, среднюю кинетическую энергию молекул, средний квадрат скорости молекул) с макропараметрами газа (р — давление, V — объем, Т — температура).

Давление газа на стенки сосуда пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

Ниже приведены различные выражения для основного уравнения МКТ:

где
р — давление газа на стенки сосуда(Па)
n — концентрация молекул, т.е. число молекул в единице объема ( 1/м 3 )
— масса молекулы (кг)
— средний квадрат скорости молекул (м 2 /с 2 )
ρ — плотность газа (кг/м 3 )
— средняя кинетическая энергия молекул (Дж)

Давление идеального газа на стенки сосуда зависит от концентрации молекул и пропорционально средней кинетической энергии молекул.

Дополнительные расчетные формулы по теме

Формула для расчета концентрации молекул:

где
N — число молекул газа
V — объем газа (м 3 )

Формула для расчета плотности газа:

где
mo — масса молекулы (кг)
n — концентрация молекул (1/м 3 )

Молекулярная физика. Термодинамика — Класс!ная физика

Основное уравнение молекулярно-кинетической теории газов

Средняя оценка: 4.6

Всего получено оценок: 104.

Средняя оценка: 4.6

Всего получено оценок: 104.

Основное уравнение молекулярно-кинетической теории газов связывает макроскопический параметр газа — давление — с параметрами молекул. Рассмотрим кратко вывод этого уравнения.

Основные положения МКТ

Молекулярно-кинетическая теория (МКТ) описывает тепловые явления на основе положений о строении вещества. Таких положений три:

  • все вещества состоит из мельчайших частиц-молекул;
  • молекулы находятся в постоянном хаотическом движении;
  • частицы могут взаимодействовать друг с другом.

В зависимости от скорости движения молекул и от вида их взаимодействий, вещества находятся в различном температурном и агрегатном состоянии.

Давление идеального газа

Одним из объектов, который хорошо описывается с помощью МКТ, является идеальный газ.

В идеальном газе молекулы представляют собой материальные точки, которые хаотически движутся в предоставленном объеме, сталкиваясь друг с другом и со стенками сосуда. Столкновения абсолютно упруги, и других взаимодействий между молекулами нет.

Рис. 2. Идеальный газ.

Учитывая основные положения МКТ газов, становится возможным связать величину давления с параметрами его молекул. В упрощенном виде ход рассуждений будет таким.

Для определения давления учтем, что, если средняя скорость молекулы равна $v_<ср>$, то импульс, переданный ею при абсолютно упругом ударе о стенку сосуда, равен:

Если концентрация молекул равна $n$, то количество ударов молекул о стенку сосуда площадью $S$ за время $t$ равно:

А полный импульс силы, подействовавший на стенку, равен:

Из двух последних формул найдем силу:

Поскольку в ударах о стенку сосуда участвовали лишь молекулы, имеющие составляющую скорости, перпендикулярную стенке и направленную в ее сторону, то в среднем импульс передавала только одна шестая молекул (в трехмерном пространстве молекулы могут двигаться в шести направлениях). Следовательно, среднее значение силы в шесть раз меньше полученного значения:

Поделив полученное значение силы на площадь, получим создаваемое ею давление:

Полученная формула — это и есть основное уравнение молекулярно-кинетической теории газов.

Иногда основное уравнение МКТ записывается с использованием средней кинетической энергии молекулы. Средняя кинетическая энергия равна:

Выражая среднеквадратичную скорость из этой формулы и подставляя ее в предыдущую, получим:

Давление идеального газа пропорционально концентрации и средней кинетической энергии молекулы.

Что мы узнали?

Основное уравнение молекулярно-кинетической теории идеального газа связывает макроскопический параметр газа — давление — с параметрами его молекул: с концентрацией, массой и средней скоростью. Поскольку масса и средняя скорость молекулы однозначно определяют среднюю энергию молекулы, основное уравнение МКТ можно записать с помощью средней энергии.


источники:

http://class-fizika.ru/10_27.html

http://obrazovaka.ru/fizika/osnovnoe-uravnenie-molekulyarno-kineticheskoy-teorii-gazov.html