20 фотоэффект и его виды уравнение эйнштейна для фотоэффекта применение фотоэффекта в технике

Фотоэффект в физике: что это такое, формулы, виды, применение

Фотоэлектрический эффект (фотоэффект) — это физический процесс, в котором электроны взаимодействуют со светом или любым другим электромагнитным излучением. В этой статье вы узнаете о физических основах фотоэлектрического эффекта. Мы также объясним три вида этого явления и два экспериментальных метода его обнаружения.

Фотоэлектрическое явление — один из тех эффектов, открытие которого стало результатом упорного труда и многочасовых лабораторных исследований многих ученых. До того как Альберт Эйнштейн объяснил этот эффект, введя понятие квантов, то есть порций энергии, многие исследователи, среди которых были Генрих Герц и Александр Столетов, тщательно изучали различные аспекты этого явления. По всей вероятности, никто из них не предполагал, какое практическое значение будет иметь их работа.

Простое объяснение фотоэффекта

Атомы или молекулы содержат связанные электроны. Когда свет попадает на молекулы или отдельные атомы, при определенных условиях возможно взаимодействие электронов со светом. Чтобы понять фотоэлектрический эффект, мы представляем свет как частицу (называемую фотоном). Фотон обладает энергией E, которую можно вычислить по частоте f света: E = h * f .

Здесь h — постоянная Планка. Эта энергия поглощается электроном. Вы можете представить этот перенос энергии как поглощение фотона электроном. Минимальная энергия, которую электроны должны поглотить, является их энергией связи, или, более точно, работой выхода WA. Только после этого электрон может освободиться от атома или металла. Высвобожденные электроны могут быть измерены в виде электрического тока.

Виды фотоэффекта

Существует три различных разновидности фотоэлектрического эффекта, с которыми мы познакомим вас далее.

Внешний фотоэффект

Внешний фотоэлектрический эффект — это явление эмиссии электронов из металла под воздействием падающего электромагнитного излучения. Механизм явления заключается в том, что фотоны излучения передают свою энергию электронам, что приводит к их эмиссии за пределы металла. Максимальная кинетическая энергия электрона равна энергии фотона минус работа выхода. Работа выхода — это энергия связи электрона в металле, обычно порядка нескольких электрон-вольт.

Более подробное объяснение.

Когда фотоны попадают в металл или полупроводник, они передают свою энергию электронам. Часть энергии необходима для того, чтобы освободить электроны от атомной связи и позволить им уйти с поверхности металла (работа выхода WA). Это взаимодействие называется внешним фотоэлектрическим эффектом. Остаточная энергия служит для ускорения электронов. Энергетическое соотношение следующее: h * f = Ekin + WA , где

где Ekin — это кинетическая энергия высвобожденных электронов. Поэтому кинетическая энергия фотоэлектрона описывается формулой: Ekin = h * f — WA

Мы видим, что должна существовать граничная частота fгр, выше которой электроны вообще не могут быть освобождены. Это следует из уравнения: h * fгр = WA и зависит от материала. Работа выхода для металлов обычно составляет несколько эВ.

Альберт Эйнштейн изучил внешний фотоэлектрический эффект с помощью квантования света. Таким образом, внешний фотоэлектрический эффект представляет собой важную веху в развитии квантовой механики.

Внутренний фотоэффект

Внутренний фотоэлектрический эффект также основан на передаче энергии фотонов электронам. Однако они не покидают материал, в котором находятся, а изменяют электронную оболочку в атоме. Это может привести к изменению проводимости материала и, следовательно, протеканию электрического тока.

Более подробное объяснение.

Внутренний фотоэффект возникает в полупроводниках — материалах, электропроводность которых меньше, чем у проводников, и больше, чем у изоляторов. Чтобы лучше понять его механизм, давайте вспомним зонную теорию проводимости. Электронные энергетические уровни в полупроводниках относятся к двум группам — валентной зоне и зоне проводимости. Эти зоны энергетически разделены возбужденной областью. Электроны с энергией в валентной зоне связаны в атомах и не участвуют в протекании электрического тока. Электроны с энергией, принадлежащей зоне проводимости, свободны и могут двигаться под действием приложенного напряжения, т.е. проводить электрический ток.

Изменение энергии электрона от энергии валентной зоны до энергии зоны проводимости при поглощении энергии фотона электромагнитного излучения называется внутренним фотоэлектрическим эффектом.

В результате полоса проводимости обогащается свободным носителем отрицательного заряда — электроном, а валентная зона обогащается электронной дыркой, т.е. вакансией, оставленной электроном, которая также участвует в протекании электрического тока. Это увеличивает проводимость материала.

Для того чтобы электроны поднялись в полосу проводимости, энергия облученного света должна быть больше, чем ширина запрещённой зоны Egap : h * f > Egap . Ширина запрещённой зоны относится к разности энергий между валентной зоной и зоной проводимости.

Полупроводник, состоящий из одного чистого материала, называется собственным полупроводником. В таких материалах число отрицательных носителей заряда в зоне проводимости — электронов — равно числу положительных зарядов в валентной зоне — дырок. На практике, однако, часто используются легированные полупроводники, т.е. обогащенные небольшим количеством другого материала. В зависимости от типа легирующего элемента различают два типа полупроводников: n-типа и p-типа. В полупроводнике p-типа преобладают дырки. Важно помнить, что речь идет только о носителях заряда, участвующих в проведении электричества, весь кристалл электрически нейтрален.

Внутренний фотоэффект также имеет место в солнечных батареях. Когда свет попадает на пограничный слой солнечного элемента (очень тонкая область на поверхности с электрическим полем), электроны высвобождаются из кристаллической связи и движутся в электрическом поле. Этот электрический ток может быть воспринят потребителем и вызывает фотонапряжение.

Молекулярный фотоэффект / атомный фотоэффект

Если облученные фотоны высвобождают электрон из отдельных атомов или молекул, они электрически заряжаются или ионизируются недостающим электроном. Это называется фотоионизацией и наблюдается, например, с помощью рентгеновских лучей. Для молекулярного фотоэлектрического эффекта требуется гораздо более высокочастотный свет, поскольку электроны прочно связаны в атомах.

Формула фотоэлектрического эффекта

Мы используем следующее соотношение для расчета физических величин: h * f = Ekin + WA

Если свет обладает энергией, достаточной для выброса электронов, мы можем вычислить граничную частоту по следующей формуле: fгр = WA / h .

Используя формулу для кинетической энергии, мы определяем скорость освобожденных электронов по формуле:

Методы обнаружения фотоэффекта

Далее мы покажем вам два метода обнаружения фотоэлектрического эффекта и, следовательно, выхода электронов.

Метод встречного поля

В методе встречного поля металлический катод облучается монохроматическим светом с частотой f. Без приложенного напряжения можно обнаружить фототок. Если приложить противодействующее напряжение UG так, чтобы катод был заряжен положительно, а анод — отрицательно, то электроны, высвобождаемые внешним фотоэлектрическим эффектом, замедляются. Необходимая для этого работа: W = e * UG .

Рис. 1. Фотоэффект: метод встречного поля

Если напряжение настолько велико, что электроны не достигают анода, то применяется следующее соотношение: Ekin = e * UG .

Встречное поле полностью компенсирует кинетическую энергию электронов. Из этой зависимости мы можем определить скорость электронов. Метод встречного поля также дает нам возможность определить постоянную Планка h. При известной работе выхода, h можно найти из уравнения: h * f = e * UG + WA

Стержень с фотоэффектом

Мы можем воспроизвести фотоэлектрический эффект в эксперименте со стержнем из ПВХ и металлической пластиной, подключенной к электрометру. Если стержень отрицательно заряжен в результате трения, то он имеет избыток электронов. Металлическая пластина нейтральна, электрометр не отклоняется.

Рис. 2. Стержневой метод — начальное состояние

Если привести стержень в контакт с пластиной, то избыточный заряд в стержне уравновесится. В результате на пластине появляется избыток электронов, и электрометр показывает отрицательное значение.

Рис. 3. Компенсация избыточного заряда в стержне

Если облучать металлическую пластину лампой с парами ртути, электрометр становится положительным. Электроны высвобождаются из пластины под действием внешнего фотоэлектрического эффекта. В металлической пластине не хватает электронов.

Применение фотоэффекта

Сегодня внешний и внутренний фотоэлектрический эффект лежат в основе таких распространенных устройств, как фотоэлементы, солнечные батареи или ПЗС-матрицы.

Фотоэлемент.

Наиболее распространенным устройством, использующим внешнее фотоэлектрическое явление, является фотоэлемент. Первые фотоэлементы были разработаны еще в 1890-х годах и начали широко использоваться в первой половине 20-го века. Простейший фотоэлемент состоит из двух электродов, катода и анода, помещенных в вакуумную колбу.

Между электродами прикладывается напряжение так, чтобы катод был соединен с положительным полюсом питающего напряжения. Если электромагнитное излучение не попадает на катод, электрический ток в цепи не течет. Когда катод освещается излучением с энергией фотонов, превышающей работу выхода материала катода, электроны выбиваются из катода и мигрируют к аноду, вызывая протекание электрического тока. Освещенный фотоэлемент проводит электрический ток.

Схемы, содержащие фотоэлемент, могут использоваться, например, для освещения уличных фонарей. Лампы загораются в сумерках. Механизм, заставляющий их светиться, реагирует на отсутствие света, то есть на прекращение протекания электрического тока в цепи, содержащей фотоэлемент. Пример такой схемы представлен на рис. 6.

Рис. 6. Схема уличного фонаря, который автоматически загорается после наступления темноты

Освещенный фотоэлемент проводит электрический ток. В цепи находится электромагнит. Если через электромагнит проходит электрический ток, создаваемое магнитное поле притягивает рычаг выключателя, размыкая цепь лампы, и лампа выключается. Когда свет прерывается, электрический ток в цепи фотоэлемента прекращается, электромагнит выключается, цепь лампы замыкается, и лампа окончательно зажигается.

Фотоэлектронный умножитель.

Рис. 7. Фотоумножитель. Источник фото

Фотоумножители — это устройства, используемые для измерения света. Чаще всего они подключаются к сцинтиллятору, который представляет собой материал, поглощающий ионизирующее излучение (например, гамма- или бета-излучение) и испускающий видимый или ультрафиолетовый свет. Излучаемый свет поглощается фотоумножителем и преобразуется в электрический сигнал.

Сцинтиллятор в сочетании с фотоумножителем представляет собой детектор ионизирующего излучения, т.е. устройство, которое поглощает ионизирующее излучение и генерирует электрический сигнал в зависимости от поглощенного излучения.

Устройство фотоумножителя очень похоже на устройство вакуумного фотоэлемента. Его важнейшими элементами являются фотокатод, где происходит внешний фотоэлектрический эффект, и анод, где накапливается заряд. Кроме того, в области между катодом и анодом находится ряд электродов, задача которых — усилить заряд, то есть увеличить количество электронов, попадающих на анод. Эти электроды называются динодами. Все три типа электродов помещаются в сильное электрическое поле. Механизм работы фотоумножителя показан на рис. 8.

Рис. 8. Схема построения фотоумножителя.

Фотоны света, испускаемые сцинтиллятором, достигают фотокатода, вызывая эмиссию электрона под действием внешнего фотоэлектрического явления. Электрон ускоряется в электрическом поле, что приводит к увеличению его кинетической энергии.

При столкновении с динодом электрон вызывает испускание нескольких вторичных электронов, которые также ускоряются и также умножаются при столкновении с другим динодом. Количество электронов увеличивается экспоненциально, так что конечный электрический сигнал, достигающий анода, может быть измерен.

Фотоумножители характеризуются высокой чувствительностью. Это означает, что их можно использовать для измерения света очень низкой интенсивности. В этом отношении они явно превосходят ПЗС-матрицы.

Фотоэлектрический (солнечный элемент).

Фотоэлектрический элемент — это устройство, в котором энергия фотона света преобразуется в электрическую энергию.

В солнечных батареях используются p-n-переходы. Фотоны, падающие на границу раздела полупроводников, вызывают выбивание электронов из валентного слоя в слой проводимости, т.е. образуется электронно-дырочная пара. Из-за пространственного распределения зарядов на p-n-переходе электроны диффундируют к полупроводнику n-типа, а дырки диффундируют к полупроводнику p-типа и остаются там. Накопление заряда создает разность потенциалов на границе раздела, т.е. электрическое напряжение. В этом процессе энергия солнечного света напрямую преобразуется в электрическую энергию. Поэтому он является отличным источником электрической энергии. Однако стоит помнить, что для хранения электрической энергии требуются батареи.

ПЗС-матрица.

ПЗС-матрица — это светочувствительный элемент, который вытеснил традиционную фотопленку, открыв путь к созданию и распространению цифровой фотографии. Матрица состоит из множества полупроводниковых пикселей размером около десятка квадратных миллиметров. Свет, падающий на полупроводниковый пиксель, приводит к выбиванию электрона из валентной зоны. На каждый пиксель наносится электрод для сбора и хранения заряда.

Размер заряда зависит от интенсивности света, освещающего пиксель. Сама ПЗС-матрица не различает цвета. Эта функция реализуется с помощью цветовых фильтров с тремя основными цветами — красным, зеленым и синим. Важным параметром для ПЗС является их квантовая эффективность, которая определяет, какой процент падающего света улавливается. Современные матрицы имеют квантовую эффективность 70%, что более чем в 10 раз выше, чем у традиционной фотопленки.

Пример задачи по фотоэффекту

Мы облучаем вольфрамовую пластину (работа выхода WA = 4,6 эВ) монохроматическим светом с частотой f = 6,75 * 10 15 Гц. Мы хотим узнать, достаточно ли энергии света для высвобождения электронов из пластины?

Для этого мы вычисляем граничную частоту:

fгр = WA / h = 4,6 эВ / 6,626 * 10⁻³⁴ Дж*с = 7,37 * 10 -19 Дж / 6,626 * 10⁻³⁴ Дж*с = 1,11 * 10 15 Гц

Частота облучаемого света превышает это значение. Поэтому электроны высвобождаются в результате фотоэлектрического эффекта. Скорость этих электронов составляет:

Формула Эйнштейна для фотоэффекта. Применение фотоэффекта

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На данном уроке, тема которого: «Формула Эйнштейна для фотоэффекта. Применение фотоэффекта», мы познакомимся с самим уравнением Эйнштейна, дадим определение красной границы фотоэффекта, а также решим задачу.

Физика. 11 класс

Конспект урока

Физика, 11 класс

Урок 22. Фотоэффект

Перечень вопросов, рассматриваемых на уроке:

  • предмет и задачи квантовой физики;
  • гипотеза М. Планка о квантах;
  • опыты А.Г. Столетова;
  • определение фотоэффекта, кванта, тока насыщения, задерживающего напряжения, работы выхода, красной границы фотоэффекта;
  • уравнение Эйнштейна для фотоэффекта;
  • законы фотоэффекта.

Глоссарий по теме:

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Фотоэффект – это вырывание электронов из вещества под действием света.

Квант — (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.

Ток насыщения — некоторое предельное значение силы фототока.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.

Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.

3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.

4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.

Теоретический материал для самостоятельного изучения

В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.

Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.

Коэффициент пропорциональности получил название постоянной Планка, и она равна:

h = 6,63 ∙ 10 -34 Дж∙с.

После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.

В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.

Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.

Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.

Схема установки для изучения законов фотоэффекта

Первый закон фотоэффекта: фототок насыщения — максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, — прямо пропорционален интенсивности падающего излучения.

Зависимость силы тока от приложенного напряжения

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

где Ав – работа выхода электронов;

h – постоянная Планка;

νmin — частота излучения, соответствующая красной границе фотоэффекта;

с – скорость света;

λкр – длина волны, соответствующая красной границе.

Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

где — максимальная кинетическая энергия электронов;

Е – заряд электрона;

– задерживающее напряжение.

Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:

В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Примеры и разбор решения заданий

1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Работа выхода — это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.

Запирающее напряжение — это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:

Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.

2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.

Запишем уравнение для фотоэффекта через длину волны:

Условие связи красной границы фотоэффекта и работы выхода:

Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:

Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:

Подставляя численные значения, получаем: λ ≈ 215 нм.


источники:

http://interneturok.ru/lesson/physics/11-klass/kvantovaja-fizika/formula-eynshteyna-dlya-fotoeffekta-primenenie-fotoeffekta

http://resh.edu.ru/subject/lesson/4917/conspect/