21 уравнения касательной плоскости и нормали к поверхности

Касательная плоскость и нормаль к поверхности.

Пусть поверхность задана в неявном виде: $F(x,y,z)=0$ и пусть точка $M_0(x_0,y_0,z_0)$ принадлежит данной поверхности. Тогда уравнение касательной плоскости к этой поверхности в точке $M_0$ таково:

Уравнение нормали имеет вид:

Если же уравнение поверхности задано в явном виде $z=f(x,y)$, то уравнение касательной плоскости имеет вид:

Уравнение нормали в случае явного задания поверхности таково:

Примечание (желательное для более полного понимания текста): показать\скрыть

Формулы (3) и (4) легко получить из формул (1) и (2). Если $z=f(x,y)$, то перенося $z$ в правую часть равенства получим: $f(x,y)-z=0$. Обозначая $F(x,y,z)=f(x,y)-z$, получим: $F_^<'>=\left(f(x,y)-z\right)_^<'>=f_^<'>(x,y)-0=f_^<'>(x,y)$. Аналогично и $F_^<'>=\left(f(x,y)-z\right)_^<'>=f_^<'>(x,y)-0=f_^<'>(x,y)$. Что же касается последней производной (т.е. производной по переменной $z$), то тут нужно учесть, что выражение $f(x,y)$ не содержит $z$, поэтому: $F_^<'>=\left(f(x,y)-z\right)_^<'>=0-1=-1$. Подставляя в формулы (1) и (2) вместо $F_^<'>$, $F_^<'>$, $F_^<'>$ соответственно $f_^<'>$, $f_^<'>$ и $-1$ и получим формулы (3) и (4).

Найти уравнение касательной плоскости и нормали к поверхности $z=3x^2y^4-6xy^3+5x-4y+10$ в точке $M_0(-2;1;20)$.

Поверхность задана в явном виде, посему для нахождения уравнений касательной плоскости и нормали будем применять формулы (3) и (4). Значения $x_0$, $y_0$, $z_0$ (координаты точки $M_0$) в нашем случае таковы: $x_0=-2$, $y_0=1$, $z_0=20$. Но перед тем, как переходить к решению, осуществим небольшую проверку. Убедимся, что точка $M_0$ действительно лежит на заданной поверхности. Эта проверка не является обязательной, но желательна, ибо ошибка в условиях подобных задач – дело вовсе не редкое. Подставим $x=x_0$, $y=y_0$ в уравнение нашей поверхности и убедимся, что $z_0$ действительно равно 20:

$$ z_0=3x_<0>^<2>y_<0>^<4>-6x_0y_<0>^<3>+5x_0-4y_0+10=3\cdot (-2)^2\cdot 1^4-6\cdot (-2)\cdot 1^3-4\cdot 1+10=12+12-4=20. $$

Проверка пройдена, точка $M_0$ действительно лежит на заданной поверхности. Теперь найдём частные производные, т.е. $z_^<'>$ и $z_^<'>$:

Нас интересуют значения частных производных именно в точке $M_0$, посему подставим $x=x_0$, $y=y_0$ в выражения частных производных:

Подставляя $x_0=-2$, $y_0=1$, $z_0=20$, $z_^ <'>\left(x_0, y_0\right)=-13$, $z_^ <'>\left(x_0, y_0\right)=80$ в формулу (3) получим уравнение касательной плоскости:

Подставляя $x_0=-2$, $y_0=1$, $z_0=20$, $z_^ <'>\left(x_0, y_0\right)=-13$, $z_^ <'>\left(x_0, y_0\right)=80$ в формулу (4) получим уравнение нормали:

Ответ: Касательная плоскость: $-13x+80y-z-86=0$; нормаль: $\frac<-13>=\frac<80>=\frac<-1>$.

Найти уравнение касательной плоскости и нормали к поверхности $z=5\sqrt-2xy-39$ в точке $M_0(3;-4;z_0)$.

Поверхность задана в явном виде, посему для нахождения уравнений касательной плоскости и нормали будем применять формулы (3) и (4). Значения $x_0$ и $y_0$ (первая и вторая координаты точки $M_0$) заданы по условию: $x_0=3$, $y_0=-4$. Третью координату (т.е. $z_0$) нужно определить самостоятельно, подставив в заданное уравнение $x=x_0$ и $y=y_0$:

Теперь, как и в предыдущем примере, перейдём к нахождению частных производных $z_^<'>$ и $z_^<'>$. После того, как мы найдём эти производные в общем виде, укажем их значения при $x=x_0$ и $y=y_0$:

Подставляя $x_0=3$, $y_0=-4$, $z_0=10$, $z_^ <'>\left(x_0, y_0\right)=11$, $z_^ <'>\left(x_0, y_0\right)=-10$ в формулы (3) и (4) получим уравнения касательной плоскости и нормали:

Ответ: Касательная плоскость: $11x-10y-z-63=0$; нормаль: $\frac<11>=\frac<-10>=\frac<-1>$.

Найти уравнение касательной плоскости и нормали к поверхности $3xy^2z+5xy+z^2=10xz-2y+1$ в точке $M_0(1;-2;3)$.

Перенесём все слагаемые в левую часть равенства и обозначим полученное в левой части выражение как $F(x,y,z)$:

Используем формулы (1) и (2). Значения $x_0$, $y_0$ и $z_0$ как и ранее обозначают координаты точки $M_0$, т.е. $x_0=1$, $y_0=-2$, $z_0=3$.

Проверим, действительно ли точка $M_0$ лежит на данной поверхности. Для этого подставим $x=x_0$, $y=y_0$ и $z=z_0$ в выражение $3xy^2z+5xy+z^2-10xz+2y-1$ и выясним, равен ли нулю полученный результат:

Итак, точка $M_0$ действительно лежит на данной поверхности. Естественно, что данная проверка не является обязательной, но она крайне желательна. Перейдём к дальнейшему решению. Нам нужно найти $F_^<'>$, $F_^<'>$ и $F_^<'>$:

Нас интересуют значения частных производных именно в точке $M_0$, посему подставим $x=x_0$, $y=y_0$ и $z=z_0$ в выражения частных производных:

Подставляя $x_0=1$, $y_0=-2$, $z_0=3$, $F_^ <'>\left(M_0\right)=-4$, $F_^ <'>\left(M_0\right)=-29$ и $F_^ <'>\left(M_0\right)=8$ в формулы (1) и (2) получим уравнения касательной плоскости и нормали:

Ответ: Касательная плоскость: $-4x-29y+8z-78=0$; нормаль: $\frac<-4>=\frac<-29>=\frac<8>$.

Найти уравнение касательной плоскости и нормали к поверхности $z^3+4xyz=-3x^2+5y+7$ в точке $M_0(0;-3;z_0)$.

Поверхность задана в неявном виде, посему для нахождения уравнений касательной плоскости и нормали будем применять формулы (1) и (2). Значения $x_0$ и $y_0$ (первая и вторая координаты точки $M_0$) заданы по условию: $x_0=0$, $y_0=-3$. Третью координату (т.е. $z_0$) нужно определить самостоятельно, подставив в заданное уравнение $x=x_0$ и $y=y_0$:

Перенесём все слагаемые в левую часть равенства:

Обозначим $F(x,y,z)=z^3+4xyz+3x^2-5y-7$ и применим формулы (1) и (2). Найдём частные производные первого порядка $F_^<'>$, $F_^<'>$ и $F_^<'>$. После того, как мы найдём эти производные в общем виде, укажем их значения в точке $M_0$:

Подставляя $x_0=0$, $y_0=-3$, $z_0=-2$, $F_^ <'>\left(M_0\right)=-24$, $F_^ <'>\left(M_0\right)=-5$ и $F_^ <'>\left(M_0\right)=12$ в формулы (1) и (2) получим уравнения касательной плоскости и нормали:

Ответ: Касательная плоскость: $-24x-5y+12z+9=0$; нормаль: $\frac<-24>=\frac<-5>=\frac<12>$.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Касательная плоскость и нормаль к поверхности

Касательной плоскостью к поверхности σ в её точке М0 называется плоскость, в которой лежат касательные ко всем кривым, проведённым на поверхности σ через точку М0.
Уравнение касательной плоскости к поверхности, заданной уравнением z = f(x,y) , в точке M0(x0,y0,z0) имеет вид:

Пример №1 . Поверхность задана уравнением x 3 +5y . Найти уравнение касательной плоскости к поверхности в точке M0(0;1).
Решение. Запишем уравнения касательной в общем виде: z — z0 = f’x(x0,y0,z0)(x — x0) + f’y(x0,y0,z0)(y — y0)
По условию задачи x0 = 0 , y0 = 1 , тогда z0 = 5
Найдем частные производные функции z = x^3+5*y :
f’x(x,y) = (x 3 +5•y)’x = 3•x 2
f’x(x,y) = (x 3 +5•y)’y = 5
В точке М0(0,1) значения частных производных:
f’x(0;1) = 0
f’y(0;1) = 5
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0: z — 5 = 0(x — 0) + 5(y — 1) или -5•y+z = 0

Пример №2 . Поверхность задана неявным образом y 2 -1/2*x 3 -8z. Найти уравнение касательной плоскости к поверхности в точке M0(1;0;1).
Решение. Находим частные производные функции. Поскольку функция задана в неявном виде, то производные ищем по формуле:

Для нашей функции:

Тогда:

В точке М0(1,0,1) значения частных производных:
f’x(1;0;1) = -3 /16
f’y(1;0;1) = 0
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0: z — 1 = -3 /16(x — 1) + 0(y — 0) или 3 /16•x+z- 19 /16 = 0

Пример . Поверхность σ задана уравнением z= y/x + xy – 5x 3 . Найти уравнение касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.
Найдем частные производные функции z= f(x, y) = y/x + xy – 5x 3 :
fx’(x, y) = (y/x + xy – 5x 3 )’x = – y/x 2 + y – 15x 2 ;
fy’ (x, y) = (y/x + xy – 5x 3 )’y = 1/x + x.
Точка М0(x0, y0, z0) принадлежит поверхности σ, поэтому можно вычислить z0, подставив заданные x0 = –1 и y0 = 2 в уравнение поверхности:

Пример №1 . Дана функция z=f(x,y) и две точки А(х0, y0) и В(х1,y1). Требуется: 1) вычислить значение z1 функции в точке В; 2) вычислить приближенное значение z1 функции в точке В исходя из значения z0 функции в точке А, заменив приращение функции при переходе от точки А к точке В дифференциалом; 3) составить уравнение касательной плоскости к поверхности z = f(x,y) в точке C(x0,y0,z0).
Решение.
Запишем уравнения касательной в общем виде:
z — z0 = f’x(x0,y0,z0)(x — x0) + f’y(x0,y0,z0)(y — y0)
По условию задачи x0 = 1, y0 = 2, тогда z0 = 25
Найдем частные производные функции z = f(x,y)x^2+3*x*y*+y^2:
f’x(x,y) = (x 2 +3•x•y•+y 2 )’x = 2•x+3•y 3
f’x(x,y) = (x 2 +3•x•y•+y 2 )’y = 9•x•y 2
В точке М0(1,2) значения частных производных:
f’x(1;2) = 26
f’y(1;2) = 36
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0:
z — 25 = 26(x — 1) + 36(y — 2)
или
-26•x-36•y+z+73 = 0

Пример №2 . Написать уравнения касательной плоскости и нормали к эллиптическому параболоиду z = 2x 2 + y 2 в точке (1;-1;3).
Скачать решение

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Поверхности. Касательная плоскость и нормаль

Краткие теоретические сведения

Способы задания поверхностей

Рассматриваем вектор–функцию двух скалярных аргументов: $$\vec=\vec(u,v).$$ Годографом такой функции является поверхность.

Запишем четыре способа задания поверхности: 1. Векторное уравнение: $$\vec=\vec(u,v).$$ 2. Параметрическое уравнение: $$x=x(u,v),\,\, y=y(u,v),\,\, z=z(u,v).$$ 3. Неявное уравнение: $$\varPhi(x,y,z)=0.$$ 4. Явное уравнение: $$z=z(x,y).$$

Поверхность называется регулярной ($k$ раз дифференцируемой), если у каждой точки этой поверхности есть окрестность, допускающая регулярную параметризацию (то есть функции $x(u,v), y(u,v),z=z(u,v)$ $k$ раз непрерывно дифференцируемы). При $k=1$ поверхность называется гладкой.

Регулярная поверхность в окрестности каждой своей точки допускает бесчисленное множество параметризаций.

Кривая, лежащая на поверхности $\vec=\vec(u,v)$, задается уравнениями $$ u=u(t),\,\, v=v(t).$$ Линии $u=\mbox$, $v=\mbox$ являются координатными линиями данной параметризации поверхности.

Решение задач

Задача 1 (Феденко №544)

Дана поверхность \begin x=u+v, \,\, y=u-v,\,\, z=uv. \end Проверить, принадлежат ли ей точки $A(4,2,3)$ и $B(1,4,-2)$.

Ответ. Точка $A$ принадлежит, так как ее координаты удовлетворяют системе уравнений, задающих поверхность. Точка $B$ не принадлежит поверхности.

Задача 2 (Феденко № 546)

Найдите неявное уравнение поверхности, заданной параметрическими уравнениями: \begin \begin x & = x_0 + a\,\mbox\,u\,\mbox\,v, \\ y & = y_0 + b\,\mbox\,u\,\mbox\,v, \\ z & = z_0 + c\,\mbox\,u. \end \end

Ответ. Эллипсоид с полуосями $a$, $b$, $c$ и центром в точке $(x_0, y_0, z_0)$: \begin \frac<(x-x_0)^2>+\frac<(y-y_0)^2>+\frac<(z-z_0)^2>=1. \end

Задача 3 (Феденко №528)

В плоскости $xOz$ задана кривая $x=f(u)$, $z=g(u)$, не пересекающая ось $Oz$. Найдите параметризацию поверхности, полученной при вращении этой кривой вокруг оси $Oz$.

Решение задачи 3

Произвольная точка $M$, принадлежащая кривой и имеющая координаты $x_0=f(u_0)$, $y_0=0$, $z_0=g(u_0)$, движется по окружности с центром на оси $Oz$ и радиусом $R=f(u_0)$ в плоскости, параллельной плоскости $xOy$: $z=g(u_0)$. Поэтому изменение ее координат можно записать следующими уравнениями: \begin \left\< \begin x_0 & = & f(u_0)\,\mbox\,v, \\ y_0 & = & f(u_0)\,\mbox\,v, \\ z_0 & = & g(u_0). \\ \end \right. \end

Поскольку точка $M$ произвольная, уравнение искомой поверхности: \begin \left\< \begin x & = & f(u)\,\mbox\,v, \\ y & = & f(u)\,\mbox\,v, \\ z & = & g(u). \\ \end \right. \end

Касательная плоскость. Нормаль

Краткие теоретические сведения

Пусть $\vec=\vec(u,v)\in C^1$ — поверхность, проходящая через точку $P(u_0, v_0)$. Пусть $u=u(t)$, $v=v(t)$ — уравнения гладкой кривой, проходящей через точку $P(u_0, v_0)$ и лежащей на заданной поверхности.

Пусть точка $P$ не является особой, то есть ранг матрицы \begin \left( \begin x_u & y_u & z_u \\ x_v & y_v & z_v \\ \end \right) \end в точке $P$ равен $2$ (для особой точки ранг меньше $2$). Если поверхность задана неявно $\varPhi(x,y,z)=0$, то в не особой точке $P$ выполняется условие: $\varPhi_x^2+\varPhi_y^2+\varPhi_z^2\neq0.$

Касательная к кривой $u=u(t)$, $v=v(t)$ на поверхности $\vec=\vec(u,v)$ определяется вектором: \begin \displaystyle\frac>

=\vec_u\displaystyle\frac
+\vec_v\displaystyle\frac
, \end где $\vec_u=\displaystyle\frac>$, $\vec_v=\displaystyle\frac>$. Для разных кривых, проходящих через точку $P(u_0, v_0)$, значения $\displaystyle\frac
$, $\displaystyle\frac
$ будут разными, а $\vec_u$, $\vec_v$ теми же. Следовательно, все векторы $\displaystyle\frac>
$ лежат в одной плоскости, определяемой векторами $\vec_u$, $\vec_v$. Эта плоскость называется касательной плоскостью к поверхности в точке $P$. Запишем уравнение касательной плоскости.

Обозначения:
— $\vec=\$ — радиус-вектор произвольной точки касательной плоскости.
— $\vec=\$ — радиус вектор точки $P(u_0, v_0)$.
— Частные производные $x_u$, $y_u$, $z_u$, $x_v$, $y_v$, $z_v$ вычисляются в точке $P(u_0, v_0)$.

Уравнение касательной плоскости:

1. Если поверхность задана векторно, то уравнение касательной плоскости можно записать через смешанное произведение трех линейно зависимых векторов: $$ \left(\vec-\vec, \, \vec_u, \, \vec_v \right)=0. $$ 2. Если поверхность задана параметрически, запишем определитель: \begin \left| \begin X-x & Y-y & Z-z \\ x_u & y_u & z_u\\ x_v & y_v & z_v\\ \end \right|=0 \end 3. Если поверхность задана неявным уравнением: \begin \varPhi_x(X-x)+\varPhi_y(Y-y)+\varPhi_z(Z-z)=0. \end 4. В случая явного задания поверхности, уравнение касательной плоскости примет вид: \begin (Z-z)=z_x(X-x)+z_y(Y-y). \end

Нормалью поверхности в точке $P$ называется прямая, проходящая через $P$ перпендикулярно касательной плоскости в этой точке.

Уравнение нормали:

1.$$ \vec=\vec + \lambda\vec, \,\, \vec=\vec_u\times\vec_v. $$ 2. \begin \displaystyle\frac< \left| \begin y_u & z_u\\ y_v & z_v\\ \end \right|>= \displaystyle\frac< \left| \begin z_u & x_u\\ z_v & x_v\\ \end \right|>= \displaystyle\frac< \left| \begin x_u & y_u\\ x_v & y_v\\ \end \right|>. \end 3. \begin \displaystyle\frac<\varPhi_x>=\displaystyle\frac<\varPhi_y>=\displaystyle\frac<\varPhi_z>. \end 4. \begin \displaystyle\frac=\displaystyle\frac=\displaystyle\frac<-1>. \end

Решение задач

Задача 1 (Феденко №574)

Дана поверхность \begin x=u\,\mbox\,v,\,\, y=u\,\mbox\,v,\,\, z=u. \end Написать:
а) уравнение касательной плоскости к поверхности;
б] уравнение нормали к поверхности;
в) касательной к линии $u=2$
в точке $M\left(u=2, v=\displaystyle\frac<\pi><4>\right)$ поверхности.

Задача 2

Через точки $A(0,1,0)$ и $B(1,0,0)$ провести плоскость, касательную к поверхности $\vec=\$.

Ответ. $z=0, -2X-2Y+Z+2=0$.

Задача 3

Построить касательную плоскость к поверхности $y=x^2+z^2$, перпендикулярную вектору $\vec\<2,1,-1\>$.

Задача 4

Через точку $M(1,2,1)$ провести плоскость, касательную к поверхности $x^2+y^2-z^2=0$.

Ответ. $X-Z=0$, $3X-4Y+5Z=0$.

Задача 5 (Феденко №594)

Докажите, что поверхности \begin z=\mbox(xy), \,\, x^2-y^2=a \end ортогональны в точках их пересечения.

Решение задачи 5

Запишем направляющие векторы нормалей к поверхностям, проведенным в точках их пересечения: \begin \begin \vec_1&=\left\<\frac<\mbox^2(x_0y_0)>,\frac<\mbox^2(x_0y_0)>,-1\right\>,\\ \vec_2&=\left\<2x_0,-2y_0,0\right\>. \end \end Скалярные произведения векторов $n_1$ и $n_2$ равны нулю, следовательно векторы ортогональны. \begin n_1\cdot n_2=0. \end


источники:

http://math.semestr.ru/math/tangent-plane.php

http://vmath.ru/vf5/diffgeom/seminar5