2cos 2x 1 0 объясните почему находятся решения уравнения

2*cos(2*x)+1=0 (уравнение)

Найду корень уравнения: 2*cos(2*x)+1=0

Решение

Дано уравнение
$$2 \cos <\left(2 x \right)>+ 1 = 0$$
— это простейшее тригонометрическое ур-ние

Ур-ние превратится в
$$\cos <\left(2 x \right)>= — \frac<1><2>$$
Это ур-ние преобразуется в
$$2 x = \pi n + \operatorname<\left(- \frac<1> <2>\right)>$$
$$2 x = \pi n — \pi + \operatorname<\left(- \frac<1> <2>\right)>$$
Или
$$2 x = \pi n + \frac<2 \pi><3>$$
$$2 x = \pi n — \frac<\pi><3>$$
, где n — любое целое число
Разделим обе части полученного ур-ния на
$$2$$
получим ответ:
$$x_ <1>= \frac<\pi n> <2>+ \frac<\pi><3>$$
$$x_ <2>= \frac<\pi n> <2>— \frac<\pi><6>$$

Тригонометрические уравнения. Как решать тригонометрические уравнения?

Тригонометрические уравнения – уравнения, содержащие переменную под знаком тригонометрических функций.

Если проще: это уравнения, в которых неизвестные (иксы) или выражения с ними находятся внутри синусов , косинусов , тангенсов и котангенсов .

Как решать тригонометрические уравнения:

Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:

где \(t\) – выражение с иксом, \(a\) – число. Такие тригонометрические уравнения называются простейшими. Их легко решать с помощью числовой окружности ( тригонометрического круга ) или специальных формул:

\(\sin ⁡x=a\) \(⇔\) \( \left[ \beginx=\arcsin a+2πn, n∈Z\\ x=π-\arcsin a+2πl, l∈Z\end\right.\)
если \(a∈[-1;1]\)

Инфографику о решении простейших тригонометрических уравнений смотри здесь: \(sinx=a\) , \(cosx=a\) , \(tgx=a\) и \(ctgx=a\) .

Пример. Решите тригонометрическое уравнение \(\sin⁡x=-\)\(\frac<1><2>\).
Решение:

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим оси.
2) Построим окружность.
3) На оси синусов (оси \(y\)) отметим точку \(-\) \(\frac<1><2>\) .
4) Проведем перпендикуляр к оси синусов через эту точку.
5) Отметим точки пересечения перпендикуляра и окружности.
6)Подпишем значения этих точек: \(-\) \(\frac<π><6>\) ,\(-\) \(\frac<5π><6>\) .
7) Запишем все значения соответствующие этим точкам с помощью формулы \(x=t+2πk\), \(k∈Z\):
\(x=-\) \(\frac<π><6>\) \(+2πk\), \(k∈Z\); \(x=-\) \(\frac<5π><6>\) \(+2πn\), \(n∈Z\)

Что означает каждый символ в формуле корней тригонометрических уравнений смотри в видео .

Внимание! Уравнения \(\sin⁡x=a\) и \(\cos⁡x=a\) не имеют решений, если \(a ϵ (-∞;-1)∪(1;∞)\). Потому что синус и косинус при любых икс больше или равны \(-1\) и меньше или равны \(1\):

Пример. Решить уравнение \(\cos⁡x=-1,1\).
Решение: \(-1,1 \(\frac<π><4>\) , \(\frac<5π><4>\)
7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в \(π\), то все значения можно записать одной формулой:

Ответ: \(x=\) \(\frac<π><4>\) \(+πk\), \(k∈Z\).

Пример. Решите тригонометрическое уравнение \(\cos⁡(3x+\frac<π><4>)=0\).
Решение:

Опять воспользуемся числовой окружностью.
1) Построим окружность, оси \(x\) и \(y\).
2) На оси косинусов (ось \(x\)) отметим \(0\).
3) Проведем перпендикуляр к оси косинусов через эту точку.
4) Отметим точки пересечения перпендикуляра и окружности.
5) Подпишем значения этих точек: \(-\) \(\frac<π><2>\),\(\frac<π><2>\) .
6)Выпишем все значение этих точек и приравняем их к аргументу косинуса (к тому что внутри косинуса).

7) Дальше решать в таком виде несколько трудновато, разобьем уравнение на два.

8) Как обычно в уравнениях будем выражать \(x\).
Не забывайте относиться к числам с \(π\), так же к \(1\), \(2\), \(\frac<1><4>\) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!

Ответ: \(x=\) \(\frac<π><12>\) \(+\) \(\frac<2πk><3>\) \(x=-\) \(\frac<π><4>\) \(+\) \(\frac<2πk><3>\) , \(k∈Z\).

Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и тригонометрические формулы , и особые методы решений уравнений:
— Метод введения новой переменной (самый популярный в ЕГЭ).
— Метод разложения на множители .
— Метод вспомогательных аргументов.

Рассмотрим пример решения квадратно-тригонометрического уравнения

Пример. Решите тригонометрическое уравнение \(2\cos^2⁡x-5\cos⁡x+2=0\)
Решение:

Сделаем замену \(t=\cos⁡x\).

Наше уравнение превратилось в типичное квадратное . Можно его решить с помощью дискриминанта .

\(D=25-4 \cdot 2 \cdot 2=25-16=9\)

Делаем обратную замену.

Первое уравнение решаем с помощью числовой окружности.
Второе уравнение не имеет решений т.к. \(\cos⁡x∈[-1;1]\) и двум быть равен не может ни при каких иксах.

Запишем все числа, лежащие на числовой окружности в этих точках.

Ответ: \(x=±\) \(\frac<π><3>\) \(+2πk\), \(k∈Z\).

Пример решения тригонометрического уравнения с исследованием ОДЗ:

Пример(ЕГЭ). Решите тригонометрическое уравнение \(\frac<2\cos^2⁡x-\sin<⁡2x>>\) \(=0\)

Есть дробь и есть котангенс – значит надо записать ОДЗ . Напомню, что котангенс это фактически дробь:

Потому ОДЗ для ctg\(x\): \(\sin⁡x≠0\).

Отметим «нерешения» на числовой окружности.

Методы решения тригонометрических уравнений

Разделы: Математика

Составной частью ЕГЭ являются тригонометрические уравнения.

К сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. Успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.

Общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:

сos px = a;sin gx = b;tg kx = c;ctg tx = d.

Для этого необходимо уметь применять тригонометрические формулы. Полезно знать и называть их “именами”:

1. Формулы двойного аргумента, тройного аргумента:

сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

sin 2x = 2 sin x cos x;

tg 2x = 2 tg x/1 – tg x;

ctg 2x = (ctg 2 x – 1)/2 ctg x;

sin 3x = 3 sin x – 4 sin 3 x;

cos 3x = 4 cos 3 x – 3 cos x;

tg 3x = (2 tg x – tg 3 x)/(1 – 3 tg 2 x);

ctg 3x = (ctg 3 x – 3ctg x)/(3ctg 2 x – 1);

2. Формулы половинного аргумента или понижения степени:

sin 2 x/2 = (1 – cos x)/2; сos 2 x/2 = (1 + cos x)/2;

tg 2 x = (1 – cos x)/(1 + cos x);

ctg 2 x = (1 + cos x)/(1 – cos x);

3. Введение вспомогательного аргумента:

рассмотрим на примере уравнения a sin x + b cos x = c а именно, определяя угол х из условий sin y = b/v(a 2 + b 2 ), cos y = a/v(a 2 + b 2 ), мы можем привести рассматриваемое уравнение к простейшему sin (x + y) = c/v(a 2 + b 2 ) решения которого выписываются без труда; тем самым определяются и решения исходного уравнения.

4. Формулы сложения и вычитания:

sin (a + b) = sin a cos b + cos a sin b;

sin (a – b) = sin a cos b – cos a sin b;

cos (a + b) = cos a cos b – sin a sin b;

cos (a – b) = cos a cos b + sin a sin b;

tg (a + b) = ( tg a + tg b)/(1 – tg a tg b);

tg (a – b) = ( tg a – tg b)/(1 + tg a tg b);

5. Универсальная тригонометрическая подстановка:

cos a = (1 – tg 2 (a/2))/(1 + (tg 2 (a/2));

tg a = 2 tg a/2/(1 – tg 2 (a/2));

6. Некоторые важные соотношения:

sin x + sin 2x + sin 3x +…+ sin mx = (cos (x/2) -cos (2m + 1)x)/(2 sin (x/2));

cos x + cos 2x + cos 3x +…+ cos mx = (sin (2m+ 1)x/2 – sin (x/2))/(2 sin (x/2));

7. Формулы преобразования суммы тригонометрических функций в произведение:

sin a + sin b = 2 sin(a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin(a + b)/2 sin (b – a)/2;

tg a + tg b = sin (a + b)/(cos a cos b);

tg a – tg b = sin (a – b)/(cos a cos b).

А также формулы приведения.

В процессе решения надо особенно внимательно следить за эквивалентностью уравнений, чтобы не допустить потери корней (например, при сокращении левой и правой частей уравнения на общий множитель), или приобретения лишних корней (например, при возведении обеих частей уравнения в квадрат). Кроме того, необходимо контролировать принадлежат ли получающие корни к ОДЗ рассматриваемого уравнения.

Во всех необходимых случаях (т.е. когда допускались неэквивалентные преобразования), нужно обязательно делать проверку. При решении уравнении необходимо научить учащихся сводить их к определенным видам, обычно начиная с легких уравнении.

Ознакомимся с методами решения уравнений:

1. Сведение к виду аx 2 + bx + c = 0

2. Однородность уравнений.

3. Разложение на множители.

4. Сведение к виду a 2 + b 2 + c 2 = 0

5. Замена переменных.

6. Сведение уравнения к уравнению с одной переменной.

7. Оценка левой и правой части.

8. Метод пристального взгляда.

9. Введение вспомогательного угла.

10. Метод “ Разделяй и властвуй ”.

1. Решить уравнение: sin x + cos 2 х = 1/4.

Решение: Решим методом сведения к квадратному уравнению. Выразим cos 2 х через sin 2 x

4 sin 2 x – 4 sin x – 3 = 0

sin x = -1/2, sin x = 3/2(не удовлетворяет условию х€[-1;1]),

т.е. х = (-1) к+1 arcsin 1/2 + k, k€z,

Ответ: (-1) к+1 /6 + k, k€z.

2. Решить уравнение: 2 tg x cos x +1 = 2 cos x + tg x,

решим способом разложения на множители

2 tg x cos x – 2 cos x + 1 – tg x = 0,где х /2 + k, k€z,

2 cos x (tg x – 1) – (tg x – 1) = 0

(2 cos x – 1) (tg x – 1) = 0

2 cos x – 1 = 0 или tg x – 1 = 0

cos x = 1/2, tgx = 1,

т.е х = ± /3 + 2k, k€z, х = /4 + m, m€z.

Ответ: ± /3 + 2k, k€z, /4 + m, m€z.

3. Решить уравнение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0.

Решение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0 однородное уравнение 2 степени. Поскольку cos x = 0 не является корнем данного уравнения, разделим левую и правую часть на cos 2 х. В результате приходим к квадратному уравнению относительно tg x

tg x = 1 и tg x = 2,

откуда х = /4 + m, m€z,

х = arctg 2 + k, k€z.

Ответ: /4 + m, m€z, arctg 2 + k, k€z.

4. Решить уравнение: cos (10x + 12) + 42 sin (5x + 6) = 4.

Решение: Метод введения новой переменной

Пусть 5х + 6 = у, тогда cos 2у + 42 sin у = 4

1 – 2 sin 2 у + 42 sin у – 4 = 0

sin у = t, где t€[-1;1]

2t 2 – 42t + 3 = 0

t = 2/2 и t = 32/2 (не удовлетворяет условию t€[-1;1])

sin (5x + 6) = 2/2,

5x + 6 = (-1) к /4 + k, k€z,

х = (-1) к /20 – 6/5 + k/5, k€z.

Ответ: (-1) к ?/20 – 6/5 + ?k/5, k€z.

5. Решить уравнение: (sin х – cos у) 2 + 40х 2 = 0

Решение: Используем а 2 +в 2 +с 2 = 0, верно, если а = 0, в = 0, с = 0. Равенство возможно, если sin х – cos у = 0, и 40х = 0 отсюда:

х = 0, и sin 0 – cos у = 0, следовательно, х = 0, и cos у = 0, отсюда: х = 0, и у = /2 + k, k€z, также возможна запись (0; /2 + k) k€z.

Ответ: (0; /2 + k) k€z.

6. Решить уравнение: sin 2 х + cos 4 х – 2 sin х + 1 = 0

Решение: Преобразуем уравнение и применим метод “разделяй и властвуй”

(sin 2 х – 2 sin х +1) + cos 4 х = 0;

(sin х – 1) 2 + cos 4 х = 0; это возможно если

(sin х – 1) 2 = 0, и cos 4 х = 0, отсюда:

sin х – 1 = 0, и cos х = 0,

sin х = 1, и cos х = 0, следовательно

х = /2 + k, k€z

Ответ: /2 + k, k€z.

7. Решить уравнение: sin 5х + sin х = 2 + cos 2 х.

Решение: применим метод оценки левой и правой части и ограниченность функций cos и sin.

– 1 sin 5х 1, и -1 sin х 1

0 cos 2 х 1

0 + 2 2 + cos 2 х 1 + 2

2 2 + cos 2 х 3

sin 5х + sin х 2, и 2 + cos 2 х 2

-2 sin 5х + sin х 2, т.е.

sin 5х + sin х 2,

имеем левая часть 2, а правая часть 2,

равенство возможно если, они оба равны 2.

cos 2 х = 0, и sin 5х + sin х = 2, следовательно

х = /2 + k, k€z (обязательно проверить).

Ответ: /2 + k, k€z.

8. Решить уравнение: cos х + cos 2х + cos 3х+ cos 4х = 0.

Решение: Решим методом разложения на множители. Группируем слагаемые, расположенные в левой части, в пары.

(В данном случае любой способ группировки приводит к цели.) Используем формулу cos a+cos b=2 cos (a + b)/2 cos (a – b)/2.

2 cos 3/2х cos х/2 + 2 cos 7/2х cos х/2 = 0,

cos х/2 (cos 3/2х + cos 7/2х) = 0,

2 cos 5/2х cos х/2 cos х = 0,

Возникают три случая:

  1. cos х/2 = 0, х/2 = /2 + k, k€z, х = + 2k, k€z;
  2. cos 5/2х = 0, 5/2х = /2 + k, k€z, х = /5 + 2/5k, k€z;
  3. cos х = 0, х = /2 + k, k€z.

Ответ: + 2k, /5 + 2/5k, /2 + k, k€z.

Обратим внимание на то, что второй случай включает в себя первый. (Если во втором случае взять к = 4 + 5, то получим + 2n). Поэтому нельзя сказать, что правильнее, но во всяком случае “культурнее и красивее” будет выглядеть ответ: х1 = /5 + 2/5k, х2 = /2 + k, k€z. (Вновь типичная ситуация, приводящая к различным формам записи ответа). Первый ответ также верен.

Рассмотренное уравнение иллюстрирует весьма типичную схему решения – разложение уравнения на множители за счёт попарной группировки и использования формул:

sin a + sin b = 2 sin (a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin (a + b)/2 sin (b – a)/2.

Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений весьма специфична и обычно оказывается более сложной, чем это имело место для уравнений алгебраических. Приведём решения уравнений, иллюстрирующие типичные случаи появления лишних (посторонних) корней и методы “борьбы” с ними.

Лишние корни могут появиться вследствие того, что в процессе решения произошло расширение области определения уравнений. Приведём примеры.

9. Решить уравнение: (sin 4х – sin 2х – cos 3х + 2sin х -1)/(2sin 2х – 3) = 0.

Решение: Приравняем нулю числитель (при этом происходит расширение области определения уравнения – добавляются значения х, обращающие в нуль знаменатель) и постараемся разложить его на множители. Имеем:

2 cos 3х sin х – cos 3х + 2sin х – 1 = 0,

(cos 3х + 1) (2 sin х – 1) = 0.

Получаем два уравнения:

cos 3х + 1 = 0, х = /3 + 2/3k.

Посмотрим, какие k нам подходят. Прежде всего, заметим, что левая часть нашего уравнения представляет собой периодическую функцию с периодом 2. Следовательно, достаточно найти решение уравнения, удовлетворяющее условию 0 х 8 х – cos 5 х = 1.

Решение этого уравнения основывается на следующем простом соображении: если 0 t убывает с ростом t.

Значит, sin 8 х sin 2 х, – cos 5 х cos 2 х;

Сложив почленно эти неравенства, будем иметь:

sin 8 х – cos 5 х sin 2 х + cos 2 х = 1.

Следовательно, левая часть данного уравнения равна единице тогда и только тогда, когда выполняются два равенства:

sin 8 х = sin 2 х, cos 5 х = cos 2 х,

т.е. sin х может принимать значения -1, 0

Ответ: /2 + k, + 2k, k€z.

Для полноты картины рассмотрим ещё пример.

12. Решить уравнение: 4 cos 2 х – 4 cos 2 3х cos х + cos 2 3х = 0.

Решение: Будем рассматривать левую часть данного уравнения как квадратный трёхчлен относительно cos х.

Пусть D – дискриминант этого трёхчлена:

1/4 D = 4 (cos 4 3х – cos 2 3х).

Из неравенства D 0 следует cos 2 3х 0 или cos 2 3х 1.

Значит, возникают две возможности: cos 3х = 0 и cos 3х = ± 1.

Если cos 3х = 0, то из уравнения следует, что и cos х = 0, откуда х = /2 + k.

Эти значения х удовлетворяют уравнению.

Если cos 3х = 1, то из уравнения cos х = 1/2 находим х = ± /3 + 2k. Эти значения также удовлетворяют уравнению.

Ответ: /2 + k, /3 + 2k, k€z.

13. Решить уравнение: sin 4 x + cos 4 x = 7/2 sin x cos x.

Решение: Преобразуем выражение sin 4 x + cos 4 x,выделив полный квадрат: sin 4 x + cos 4 x = sin 4 x + 2 sin 2 х cos 2 х + cos 4 x – 2 sin 2 х cos 2 х = (sin 2 х + cos 2 х) 2 – 2 sin 2 х cos 2 х, откуда sin 4 x + cos 4 x = 1 – 1/2 sin 2 2х. Пользуясь полученной формулой, запишем уравнение в виде

1-1/2 sin 2 2х = 7/4 sin 2х.

обозначив sin 2х = t, -1 t 1,

получим квадратное уравнение 2t 2 + 7t – 4 = 0,

решая которое, находим t1 = 1/2, t2 = – 4

уравнение sin 2х = 1/2

2х = (- 1) к /6 + k, k€z, х = (- 1) к //12 + k /2, k€z .

уравнение sin 2х = – 4 решений не имеет.

Ответ: (- 1) к //12 + k /2, k€z .

14. Решить уравнение: sin 9х + sin х = 2.

Решение: Решим уравнение методом оценки. Поскольку при всех значениях а выполнено неравенство sin а1,то исходное уравнение равносильно sin х = 1 и sin 9х =1,откуда получаем х = /2 + 2k, k€z и х = /18 + 2n, n€z.

Решением будут те значения х, при которых выполнено и первое, и второе уравнение. Поэтому из полученных ответов следует отобрать только х = /2 + 2k, k€z.

Ответ: /2 + 2k, k€z.

15. Решить уравнение: 2 cos x = 1 – 2 cos 2 x – v3 sin 2х.

Решение: воспользуемся формулой:

сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

и перепишем уравнение в виде

2 cos x = – cos 2х – 3 sin 2х.

Применим к правой части процедуру введения дополнительного аргумента. Получим уравнение:

2 cos x = – 2 (1/2 cos 2х + 3/2 sin 2х),

которое можно записать в виде

2 cos x = – 2 (cos а cos 2х + sin а sin 2х),

где очевидно, а = /3. Преобразуя правую часть полученного уравнения с помощью формулы:

cos (a – b) = cos a cos b + sin a sin b;

приходим к уравнению

2 cos x = – 2 cos (2х – /3),

cos x + cos (2х – /3) = 0.

Последнее уравнение легко решить, преобразовав сумму косинусов в произведение по формуле:

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2,

cos x + cos (2х – /3) = 2 cos (3х/2 – /6) cos (/6 – х/2) = 0

Это уравнение расщепляется на два уравнения

cos (3х/2 – /6) = 0, и

cos (/6 – х/2) = 0,

решение которых уже не представляет сколь нибудь значительных трудностей.

Ответ: 2/9(2 + 3n), 2/3(2 + 3 k), n, k€z.

16. При каких значениях параметра а, уравнение а sin x – 4 cos x = 5, имеет решения?

Решение: преобразуем левую часть уравнения, используя формулу введения дополнительного аргумента:

а sin x – 4 cos x = (а 2 + 16) sin (x – y), где y определяется из условий sin y = – 4/(а 2 + 16), и cos y = а /(а 2 + 16).

Но значение y нас не интересует. Поэтому данное уравнение перепишем в виде

(а 2 + 16) sin (x – y) = 5,

sin (x – y) = 5/(а 2 + 16), это уравнение имеет решение при условии 5/(а 2 + 16) 1.

Решим это неравенство:

5/(а 2 + 16) 1, обе части умножим на (а 2 + 16):

5 (а 2 + 16),

(а 2 + 16) 5,

а 2 + 16 25,

а 2 9, или

а 3, следовательно

а € (-;-3] U [3; ).

Ответ: (-;-3] U [3; ).

17. При каких значениях параметра а, уравнение 2 sin 2 x + 3 cos (x +2 а) = 5, имеет решения?

Решение: поскольку 0 sin 2 x 1, и -1 cos (x +2а) 1 левая часть уравнения может равняться 5 тогда и только тогда, когда одновременно выполняются равенства sin 2 x = 1, и cos (x +2 а) = 1.

Это означает, что исходное уравнение равносильно системе уравнений sin 2 x = 1, и cos (x +2 а) = 1.

sin x = – 1, sin x = 1, cos (x +2 а) = 1;

х = /2 + n, n€z, и x +2 а = 2 к, к€z;

х = /2 + n, и x = – 2 а + 2 к;

/2 + n = – 2 а + 2 к;

2 а = 2 к – /2 – n;

а = к – /4 – n/2;

а = – /4 + /2 (2к – n);

а = – /4 + m/2, m€z.

Ответ: – /4 + m/2, где m€z.

Рассмотренные выше примеры лишь иллюстрируют несколько общих рекомендаций, которые полезно учитывать при решении тригонометрических уравнений. Из приведённых примеров видно, что дать общий рецепт в каждом конкретном случае невозможно.

Ежегодно варианты экзаменационных материалов ЕГЭ содержат от 4-х до 6-ти различных задач по тригонометрии. Поэтому параллельно с повторением теоретического материала значительное время должно быть отведено решению конкретных задач, в том числе и тригонометрических уравнений. А умение можно выработать, только получив практические навыки в решении достаточного числа тригонометрических уравнений.


источники:

http://cos-cos.ru/math/93/

http://urok.1sept.ru/articles/537151