3 уравнение прямой проходящей через вершину a параллельно bc

Г) уравнение прямой, проходящей через вершину параллельно стороне .

Читайте также:
  1. A. Диффузия с помощью переносчика, диффузия через поры.
  2. D. Это объем жидкости, протекающий через сечение трубы в единицу времени;
  3. D.S. ингаляционно во время присупа. 1-2 дозы, при необходимости- повторить через 20-30 мин.
  4. Iii. Уравнение прямой, проходящей через данную точку в данном направлении
  5. Q.1.1. Прохождение света через кристаллы.
  6. R-виды стратегий и их роль в сукцессионных процессах (график и уравнение роста, сильные и слабые стороны стратегий).
  7. А) через ЖКТ
  8. Большая проникающая способность через поверхность кожи.
  9. В) Розрахунки при вираженні концентрацій через титр по визначуваній речовині.
  10. В-четвертых,параллельнораз­дельное обучение мальчиков и девочек положительно влияет на укрепление как физического, так и психического здоровья учащихся.
A(1;2),B(-1;-2),C(4;-5).

Решение:

Координаты векторов находим по формуле:

здесь X,Y координаты вектора; xi, yi — координаты точки Аi; xj, yj — координаты точки Аj

Например, для вектора AB

X = -1-1 = -2; Y = -2-2 = -4

=(-2;-4)

=(3;-7)

=(5;-3)

а) Длина стороны

Ответ:

б) Уравнение прямой

Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями:

Уравнение прямой AB

Каноническое уравнение прямой:

y = 2x или y -2x = 0

Ответ: или y = 2x или y -2x = 0

в) Угол

Найдем угол между векторами AB(-2;-4) и AC(3;-7)

γ = arccos(0.65) = 49.77 0

Ответ: = 49,77 0

г) Уравнение параллельной прямой AB, проходящей через точку С(4,-5)

Уравнение прямой AB: y = 2x

Уравнение СN параллельно AB находится по формуле:

Подставляя x0 = 4, k = 2, y0 = -5 получим:

y = 2x -13 или y -2x +13 = 0

Ответ: y = 2x -13 или y -2x +13 = 0

Задание. 4. Даны координаты точек . Требуется:

а) составить канонические уравнения прямой ;

б) составить уравнение плоскости , проходящей через точку перпендикулярно прямой ;

в) составить уравнение плоскости , проходящей через точки ;

Дата добавления: 2015-04-20 ; просмотров: 11 | Нарушение авторских прав

3 уравнение прямой проходящей через вершину a параллельно bc

Внимание! Если вы делали заказ после 19.08.2021, вход в новый Личный кабинет — тут

Неправильный логин или пароль.

Укажите электронный адрес и пароль.

Пожалуйста, укажите электронный адрес или номер телефона, который вы использовали при регистрации. Вам будет отправлено письмо со ссылкой на форму изменения пароля или SMS сообщение с новым паролем.

Инструкция по изменению пароля отправлена на почту.

Чтобы зарегистрироваться, укажите ваш email и пароль

Нажимая кнопку «Зарегистрироваться» вы даете согласие на обработку персональных данных в соответствии с политикой конфеденциальности.

Составить уравнение стороны ab треугольника abc

Как составить уравнение сторон треугольника по координатам его вершин?

Зная координаты вершин треугольника, можно составить уравнение прямой, проходящей через 2 точки.

Дано: ΔABC, A(-5;1), B(7;-4), C(3;7)

Составить уравнения сторон треугольника.

1) Составим уравнение прямой AB, проходящей через 2 точки A и B.

Для этого в уравнение прямой y=kx+b подставляем координаты точек A(-5;1), B(7;-4) и из полученной системы уравнений находим k и b:

Таким образом, уравнение стороны AB

2) Прямая BC проходит через точки B(7;-4) и C(3;7):

Отсюда уравнение стороны BC —

3) Прямая AC проходит через точки A(-5;1) и C(3;7):

УСЛОВИЕ:

Даны вершины треугольника ABC. Найти: а) уравнение стороны AB; б) уравнение высоты CH; в) уравнение медианы AM; г) точку персечения медианы AM и высоты CH; д) уравнение прямой, проходящей через вершину C параллельно стороне AB; е) расстояние от точки C до прямой AB
A(-3,8); B(-6;2); C(0,-5)

РЕШЕНИЕ ОТ u821511235 ✪ ЛУЧШЕЕ РЕШЕНИЕ

Добавил vk247797756 , просмотры: ☺ 17346 ⌚ 2018-11-27 17:51:50. математика 1k класс

Решения пользователей

Написать комментарий

Делим обе части равенства на π

и умножаем на 4

+pi k, k in Z
Можно правую часть записать в виде двух ответов:

x=1+8n in Z : это . [b] -15; -7; 1; 9; 17; ..[/b].

x=3+ 8n, n in Z : это[b] -13; -5; 3; 11; . [/b]

[b]x=-5 – наибольшее отрицательное [/b]

О т в е т. x=1+8n in Z или x=3+ 8n, n in Z

корни чередуются так:

. -15;-13;-7;-5; 1;3; 9;11; 17; 19; .

[b]x=-5 – наибольшее отрицательное [/b] (прикреплено изображение)

a=1 – старший коэффициент
b=1 – средний коэффициент
с=-2 – свободный член

4.
x^2=a-5
При a-5=0 ⇒ при а=5
уравнение имеет один корень х=0

5.
Δ Прямоугольный, так как верно равенство: b^2=a^2+c^2
5^2=3^2+4^2
25=9+16
Значит, ∠ B=90 градусов и ∠ А+ ∠ С=90 градусов.

∠ А- ∠ С=36 градусов.
∠ А+ ∠ С=90 градусов.

складываем оба равенства:

2* ∠ А=126 градусов.

По формулам приведения:

sin^2x+sinx-2=0
D=9
sinx=-2 или sinx=1

sinx=-2 уравнение не имеет корней, -1 ≤ sinx ≤ 1

sinx=1 ⇒ x=(π/2)+2πk, k ∈ Z или х=90 ° +360 ° *k, k ∈ Z

Найдем корни, принадлежащие указанному отрезку с помощью неравенства:

-286 ° ≤ 90 ° +360 ° *k ≤ 204 °

-286 °-90 ° ≤ 360 ° *k ≤ 204 ° -90 °

-376 ° ≤ 360 ° *k ≤ 114 °

Неравенство верно при k=[green]-1[/green] и k=[red]0[/red]

Значит, указанному отрезку принадлежат два корня:

x=90 ° +360 °* ([green]-1[/green])=-270 °

x=90 ° +360 °*[red]0[/red]=90 °

7. KT- средняя линия трапеции:

Cредняя линия трапеции делит высоту трапеции пополам ( см. рис)

Высоты треугольников АКО и СОК равны половине высоты трапеции

S_( Δ АКО)+S_( Δ COK)=44

S_( Δ АКО)+S_( Δ COK)=KO*(h/4) +OT*(h/4)=

О т в е т. [b]176[/b]

B=-2
[i]l[/i]=8 – количество ребер четырехугольной пирамиды

Что ты хочешь узнать?

Ответ

Проверено экспертом

а) Длина стороны АВ:

б) Уравнение сторон АВ и ВС и их угловые коэффициенты: АВ : Х-Ха = У-Уа
Хв-Ха Ув-Уа

Получаем уравнение в общем виде:
АВ: 4х – 8 = 3у – 6 или
АВ: 4х – 3у – 2 = 0
Это же уравнение в виде у = кх + в:
у = (4/3)х – (2/3).
Угловой коэффициент к = 4/3.

ВС: 2х + у – 16 = 0.
ВС: у = -2х + 16.
Угловой коэффициент к = -2.

в) Внутренний угол В:Можно определить по теореме косинусов.
Находим длину стороны ВС аналогично стороне АВ:
BC = √((Хc-Хв)²+(Ус-Ув)²) = 2.236067977
cos В= ( АВ²+ВС²-АС²) / ( 2*АВ*ВС) = 0.447214
Угол B = 1.107149 радиан = 63.43495 градусов.

Можно определить векторным способом:
Пусть координаты точек
A: (Xa, Ya) = (2; 2) .
B: (Xb, Yb) = (5; 6).
С: (Xc, Yc) = (6; 4).

Находим координаты векторов AB и BС:
AB= (Xb-Xa; Yb-Ya) = ((5 – 2); (6 – 2)) = (3; 4);
BС= (Xc-Xв; Yс-Yв) = ((6 – 5); (4 – 6)) = (1; -2).
Находим длины векторов:
|AB|=√((Xb-Xa)² + (Yb-Ya)^2) = 5 ( по пункту а)
|ВС|=√((Xс-Xв)²+(Yс – Yв) = √(1²+(-2)²) = √5 = 2.236067977 .
b=cos α=(AB*ВС)/(|AB|*|ВС|
AB*ВC = (Xв – Xa)*(Xc – Xв) + (Yв – Ya)*(Yc – Yв) =
= 3*1 + 4*(-2) = 3 – 8 = -5.
b = cosα = |-5| / (5*2.236067977) = 5 / 11.18034 = 0.4472136 20
Угол α=arccos(b) = arc cos 0.4472136 = 1.1071487 радиан = 63.434949°.

г) Уравнение медианы АЕ.
Находим координаты точки Е (это основание медианы АЕ), которые равны полусумме координат точек стороны ВС.

3x – 6 = 3,5y – 7
3x – 3,5y + 1 =0, переведя в целые коэффициенты:
6х – 7у + 2 = 0,
С коэффициентом:
у = (6/7)х + (2/7) или
у = 0.85714 х + 0.28571.


источники:

http://reshka.feniks.help/vysshaya-matematika/analiticheskaja-geometrija/dany-vershiny-treugolnika-abc

http://4apple.org/sostavit-uravnenie-storony-ab-treugolnika-abc/