36 реальные газы свойства реальных газов уравнения состояния реального газа

Реальные газы. Уравнение Ван-дер-Ваальса. Критическое состояние.

Реальным называется газ, между молекулами которого действуют силы межмолекулярного взаимодействия, состоящие из сил притяжения и сил отталкивания.

Для получения уравнения состояния реального газа необходимо учесть собственный объем молекул и энергию взаимодействия молекул на расстоянии. Наличие собственного объема молекул приводит к уменьшению объема, предоставленного молекулам, на некоторую величину. Силы притяжения между молекулами газа вызывают уменьшение давления молекул газа на стенки сосуда на некоторую величину рi.

Это уравнение может получено путем соответствующего изменения уравнения Менделеева-Клапейрона путем внесения в него поправок.

Уравнение состояния реального газа (уравнение Ван-дер-Ваальса) для одного моля имеет вид:

,

где р — давление, оказываемое на стенки сосуда, VМ – объем одного моля газа, а и b — постоянные Ван-дер-Ваальса, имеющие для разных газов различные значения, определяемые опытным путем. Поправка – внутреннее давление, обусловленное силами взаимного притяжения между молекулами. Поправка b характеризует ту часть объем, которая недоступна для движения молекул. Она равна учетверенному собственному объему молекул, содержащихся в моле газа:

b= NA.

Уравнение Ван-дер-Ваальса для произвольной массы газа имеет вид:

Уравнение Ван-дер-Ваальса позволяет построить теоретические изотермы реального газа и сравнить их с изотермами идеального газа и экспериментальными изотермами реального газа.

Уравнение Ван-дер-Ваальса после нескольких преобразований можно записать в виде:

.

Это уравнение третьей степени относительно V. Кубическое уравнение может иметь либо три вещественных корня, либо один вещественный и два мнимых.

Первому случаю соответствуют изотермы при низких температурах – кривые для Т1 и Т2 (рис.9.1.) Второму случаю изотермы при высоких температурах (одно значение объема V отвечает одному значению давления р), то есть любая изотерма начиная от изотермы для Тк.

Совпадение изотерм идеального и реального газа наблюдается при малых давлениях и больших объемах (так как при этих условиях газ можно считать идеальным). Для семейства изотерм Ван-дер-Ваальса характерно так называемой критической изотермы (при температуре Тк) имеющий точку перегиба при некотором давлении рк и объеме Vк; при Т>Тк все изотермы идут монотонно, при Т

Уравнение Ван-дер-Ваальса описывает не только свойства газов и паров, но и жидкостей. Анализ изотерм реального газа показывает, что превращение реального газа в жидкость возможно только при температурах, меньших критической, и при соответствующих давлениях.

Дата добавления: 2015-04-01 ; просмотров: 18785 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнения состояния реальных газов

Вопрос №1

Идеальный газ. Законы идеальных газов

Идеальным называется газ, у которого объемы молекул беско­нечно малы и отсутствуют силы межмолекулярного взаимодей­ствия. Молекулы идеального газа представляют собой материаль­ные точки, взаимодействие между которыми ограничено молеку­лярными соударениями.

Любой реальный газ тем ближе к идеальному, чем ниже его давление и выше температура. Например, окружающий нас воз­дух можно считать идеальным газом. Понятие идеального газа и законы идеальных газов полезны в качестве предела законов реального газа.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

На практике часто приходится иметь дело с газами при невы­соких давлениях, поэтому расчеты различных термодинамических процессов с достаточной степенью точности можно проводить по уравнениям идеального газа.

Закон Авогадро

Согласно этому закону, все газы при одинаковых температу­рах и одинаковом давлении содержат в одном и том же объеме оди­наковое число молекул. Большую техническую значимость имеет следствие из закона Авогадро: объемы киломолей различных га­зов равны, если они находятся при одинаковых температурах и давлениях. При нормальных физических условиях (Т= 273,15 К, р = 760 мм рт. ст.) объем киломоля любого вещества равен Vµ=µν=22,4 м 3 /кмоль.Напомним, что киломолем называется количество вещества в килограммах, численно равное его молекулярной массе.

Этот закон был открыт независимо друг от друга английским физиком Р. Бойлем и французским ученым Э. Мариоттом. Ими было доказано, что при постоянной температуре газа произведе­ние давления газа на его объем есть величина постоянная, т.е. при

рV= const и рv = const.

Закон Гей-Люссака

Этот закон устанавливает, что если в процессе нагрева или охлаждения газа давление подцерживается постоянным, то объем изменяется пропорционально абсолютной температуре, т.е. если

Р = const, то и v/ Т = const.

Если же мы рассмотрим процесс нагрева или охлаждения газа в сосуде постоянного объема (v= const), то р/Т = const.

Уравнение состояния идеального газа

Для 1 кг газа Клапейроном установлено уравнение состояния рv = RT, в котором газовая постоянная Rимеет для каждого газа свое постоянное значение. Измеряется Rв Дж/кг-К и имеет вполне определенный физический смысл — это работа, совершаемая 1 кг газа при его нагреве на один кельвин при постоянном давлении. Для газа с произвольной массой M/(кг) уравнение состояния имеет вид

Для одного киломоля вещества уравнение состояния (получе­но Д.И. Менделеевым) имеет вид рVµ =µRT, где µR— универсаль­ная газовая постоянная, которая одинакова для всех газов и равна 8314 Дж/кмольК.

Во всех этих уравнениях давление подставляется в Па, темпе­ратура — в К, объем — в м 3 и удельный объем — в м 3 /кг.

В резервуаре объемом 10 м 3 находится азот при из­быточном давлении 100 кПа и при температуре 27 °С. Атмосфер­ное давление равно 750 мм рт. ст. Требуется найти массу и плот­ность азота.

Выразим атмосферное давление в паскалях: рб = 10 5 Па.

Абсолютное давление газа равно:p =риб = 100 • 10 3 + 10 5 = = 2 • 10 5 Па.

Газовая постоянная азота равна (µ = 28 кг/кмоль)

R = 8314/28 = 297 Дж/кгЧК. Масса газа равна

М =рV/RT= 2*10 5* 10/297 • (273,15 + 27) = 22,43 кг.

р = M/V= 22,43/10 = 2,243 кг/м 3 .

Изм.
Лист
№ докум.
Подпись
Дата
Лист

РЕАЛЬНЫЕ ГАЗЫ

Свойства реальных газов

Свойства реальных газов значительно отличаются от свойств идеальных газов, причем отличия тем значительнее, чем выше дав­ление и ниже температура газа. Это объясняется тем, что молеку­лы реальных газов имеют конечный объем и между ними существу­ют силы межмолекулярного взаимодействия. Уравнение состояния 1 кг реального газа имеет вид

где z= φ(р, T) — коэффициент сжимаемости, который может быть как больше, так и меньше единицы.

При проведении термодинамических расчетов с реальными газами нужно учитывать зависимость внутренней энергии, энталь­пии и теплоемкости не только от температуры, но и от давления газа. При одном и том же давлении какое-либо вещество в зависи­мости от температуры может находиться в разных состояниях.

Из физики известно, что любое вещество может находиться в твердом, жидком или газообразном состоянии. Эти состояния бу­дем называть фазами, а процесс перехода из одного состояния в другое — фазовым переходом.

При определенных условиях могут существовать одновремен­но две фазы вещества, например, лед и жидкость, пар и жидкость. Если пар и жидкость находятся в состоянии равновесия, то пар называется насыщенным.

У всех веществ фазовые переходы происходят при определен­ных физических параметрах, поэтому рассмотрение свойств реаль­ных газов можно начать на примере вещества, которое является основным рабочим телом в циклах тепловых электростанций, в том числе и атомных. Этим рабочим телом является вода, и не только потому, что она относительно дешева и нетоксична, а потому, что она обладает благоприятными для работы термодинамическими свойствами.

Рассмотрим диаграмму «v—p» воды и во­дяного пара, на которой изобразим грани­цы между фазами (рис. 1.1). В области а нахо­дится в равновесии смесь льда и некипящей воды, в области Ь находится некипящая вода, в области с находится смесь кипящей воды и водяного пара, в области d— перегретый во­дяной пар. Прямой 1-2 показан изобарный процесс подвода теплоты.

Показанные на рис. 1.1 кривые называют­ся пограничными; кривые, ограничивающие с двух сторон область с, называются левой и правой пограничными кривыми. Им соответствуют кипящая вода (левой) и сухой насы­щенный пар (правой). Область между этими кривыми называется областью влажного насыщенного пара — в этой области находятся в равновесии сухой насыщенный пар и кипящая вода. Смесь сухо­го насыщенного пара и кипящей воды называют влажным насы­щенным паром. Масса влажного насыщенного пара равна

где М’ — масса кипящей воды и М» — масса сухого насыщенного пара.

В дальнейшем все параметры, относящиеся к кипящей жидкости, будут иметь индекс «штрих» (р’, h’и т.д.), а все параметры, от­носящиеся к сухому насыщенному пару,— индекс «два штри­ха» (р’, h» и т.д.).

Температуру и давление насыщенного пара принято обозна­чать Тн и рн. В то же время в ряде литературных источников их обозначают Тs и рs (буква s является первой буквой английского слова sаturation — насыщение). Отношение массы сухого насыщен­ного пара к общей массе влажного насыщенного пара называется степенью сухости и обозначается х. Ясно, что на левой погранич­ной кривой х = 0, а на правой — х = 1. Разность <1-х) называется степенью влажности.

Чем выше давление пара, тем меньше расстояние по горизон­тали между левой и правой пограничными кривыми, а при определенном давлении пара эти кривые смыкаются. Точка, в которой исчезают различия в свойствах кипящей жидкости и сухого насы­щенного пара, называется критической (точка к на рис. 1.1).

Термические параметры различных веществ в критической точке различны. Эти параметры для ряда химических веществ приведе­ны в табл. 1

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Таблица 1 Критические параметры веществ

ВеществоTкр, Кpкр,МПаρкр, кг/м 3
Азот N23,40
Водород Н233,21,29
Водяной пар H2O647,1222,115
Кислород О25,05
Ртуть Нg
Диоксид углерода СО27,38

При сверхкритическом давлении не может быть влажного на­сыщенного пара. Если давление пара больше критического и по­стоянно по величине (р > ркр), то при подводе (или отводе) тепло­ты физические параметры (удельный объем, энтальпия и др.) меня­ются плавно, в то же время наблюдается резкое изменение тепло-емкостей сp исvв тех процессах, где сверхперегретая вода перехо­дит в сверхперегретый водяной пар.

Уравнения состояния реальных газов

Известно значительное число уравнений состояния реальных газов, и одна из самых удачных попыток была сделана Ван-дер-Ваальсом, который получил уравнение в виде

Слагаемое a/v 2 учитывает внутреннее давление, обусловлен­ное силами взаимодействия молекул газа, а величина b— умень­шение объема, в котором движутся молекулы реального газа. Если по этому уравнению находить величины удельных объе­мов реальных газов, то уравнение (1) имеет три действительных корня при Т Ткр . Точность вычислений по этому уравнению невелика.

В самой общей форме уравнение состояния реальных газов имеет вид

(2)

где 𝛽k — вириальные коэффициенты, зависящие от температуры газа.

Число членов ряда в уравнении (2) может быть достаточно велико, поэтому расчеты по этому уравнению вызывают значитель­ные трудности.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Изохорный процесс – это процесс сообщения или отнятия теплоты от газа при постоянном объеме v=const.

Этот процесс используется как подготовительный процесс в циклах.

Соотношение между параметрами для конечного участка процесса 1-2 определяется законом Шарля: , который следует из уравнений состояния для точек 1 и 2:

и при .

Поскольку работа расширения в этом процессе равна нулю: , т.к. , то из уравнения 1-го закона термодинамики следует, что:

.

Таким образом, подведенная к газу в изохорном процессе теплота целиком идет на увеличение его внутренней энергии. Для ТП коэффициент распределения теплоты , теплоемкость и показатель политропы:

.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Изобарный процесс – это процесс сообщения или отнятия теплоты от газа при постоянном давлении р=const.

Соотношение между параметрами в процессе р=const: — закон Гей-Люссака, т.к.: , и .

Работа расширения . Т.к. , то .

Следовательно, удельная газовая постоянная R— это работа, совершаемая 1кг газа в процессе p=const при его нагревании на один градус. Размерность R: Дж/кгК. Уравнение 1-го закона термодинамики в этом случае имеем вид:

.

Таким образом, вся теплота, подведенная к газу в изобарном процессе, расходуется на увеличение его энтальпии.

Коэффициент распределения теплоты в процессе р=const равен:

, .

В T-s координатах взаимное положение изобары и изохоры имеет вид:

Изм.
Лист
№ докум.
Подпись
Дата
Лист

, , т.е. изобара более пологая логарифмическая кривая в T-s координатах, чем изохора.

Изотермический процесс – это процесс сообщения или отнятия теплоты от газа при постоянной температуре

При Т=const из уравнения состояния имеем: — это уравнение изотермического процесса является уравнением равнобокой гиперболы.

Тогда , и — закон Бойля-Мариотта.

Из уравнения 1-го закона термодинамики при имеем:

и q=l, т.е. вся теплота, сообщаемая газу в изотермическом процессе, целиком идет на работу расширения газа.

Изменение энтальпии в процессе T=const равно:

.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Работа расширения .

Коэффициент распределения теплоты

.

Тогда теплоемкость и показатель политропы для процесса T=const будет равен , т.е. .

Адиабатный процесс – это процесс, протекающий без внешнего теплообмена, т.е. q=0 и (на конечном и бесконечно малом участке процесса).

Если записать для этого случая уравнения 1-го закона термодинамики в виде:

1. или ,

2. или , то после деления (1) на (2) получим:

— показатель адиабаты.

Тогда после интегрирования выражения для конечного процесса 1-2 будем иметь , или — это есть уравнение адиабатного процесса в p-v-координатах, которое является уравнением неравнобокой гиперболы.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

, т.к. Т , то ds=0 и s=const. Таким образом, адиабатный процесс с идеальным газом есть изоэнтропийный процесс.

Для теплового двигателя цикл Карно – прямой цикл, состоящий из двух адиабат и двух изотерм, а для тепловых трансформаторов используется обратный цикл Карно. Тепловые машины, работающие по циклу Карно, имеют наибольшие значения термических кпд по сравнению с любым другим циклом при одинаковых предельных температурах цикла Т1 и Т2.

Рассмотрим прямой цикл Карно.

Графически в p-v и T-s координатах этот цикл можно представить в виде:

где ab – адиабатное сжатие ТРТ;

bc – подвод теплоты q1 в изотермическом процессе при Т1=const;

cd – адиабатное расширение ТРТ;

da – отвод теплоты в холодильник при Т2=const;

q1 = площадь bсFEb – теплота, затраченная на совершение цикла .

q2 = площадь adFЕa – теплота, отведенная в холодильник .

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Тогда термический кпд прямого цикла Карно будет равен:

.

Таким образом, термический кпд цикла Карно зависит только от предельных температур источника и холодильника и не зависит от рода рабочего тела. (Первая теорема Карно). Температура Т1 и Т2 являются основными параметрами цикла Карно, которые полностью определяют этот цикл.

При Т1=Т2 термический кпд цикла Карно , т.е. превращение теплоты в работу невозможно.

При Т2=0 или Т1= , что невыполнимо. Следовательно, в цикле Карно термический кпд цикла всегда меньше единицы: . Таким образом, для прямого цикла Карно .

Любое заключение, вытекающее из анализа прямого цикла Карно, можно рассматривать как формулировку второго закона термодинамики.

В двух разобщенных между собой теплоизолированных сосудах А и В содержатся газы, в сосуде А – аргон, в сосуде В– водород, объем сосуда А– 150 л, сосуда В – 250 л. Давление и температура аргона – р1, t1, водорода – р2, t2. Определить давление и температуру, которые установятся после соединения сосудов и смешения газов. Теплообменом с окружающей средой пренебречь

36 реальные газы свойства реальных газов уравнения состояния реального газа

Предпринималось много попыток для учета отклонений свойств реальных газов от свойств идеального газа путем введения различных поправок в уравнение состояния идеального газа. Наибольшее распространение вследствие простоты и физической наглядности получило уравнение Ван-дер-Ваальса (1873).

Первая поправка в уравнении состояния идеального газа рассматривает собственный объем, занимаемый молекулами реального газа. В уравнении Дюпре (1864)

постоянная b учитывает собственный мольный объем молекул.

При понижении температуры межмолекулярное взаимодействие в реальных газах приводит к конденсации (образование жидкости). Межмолекулярное притяжение эквивалентно существованию в газе некоторого внутреннего давления (иногда его называют статическим давлением). Изначально величина была учтена в общей форме в уравнении Гирна (1865)

(p + ) (Vnb) = nRT. (1.4)

Ван-дер-Ваальс в 1873 г. дал функциональную интерпретацию внутреннего давления. Согласно модели Ван-дер-Ваальса, силы притяжения между молекулами (силы Ван-дер-Ваальса) обратно пропорциональны шестой степени расстояния между ними, или второй степени объема, занимаемого газом. Считается также, что силы притяжения суммируются с внешним давлением. С учетом этих соображений уравнение состояния идеального газа преобразуется в уравнение Ван-дер-Ваальса:

(1.5)

или для одного моля

. (1.6)

Значения постоянных Ван-дер-Ваальса a и b, которые зависят от природы газа, но не зависят от температуры, приведены в таблице 1.3.

Таблица 1.3. Постоянные Ван-дер-Ваальса для различных газов

Газa, л 2 *бар* моль -2b,см 3 * моль -1Газa, л 2 * бар* моль -2b, см 3 * моль -1
He0,0345723,70NO1,35827,89
Ne0,213517,09NO25,35444,24
Ar1,36332,19H2O5,53630,49
Kr2,34939,78H2S4,49042,87
Xe4,25051,05NH34,22537,07
H20,247626,61SO26,80356,36
N21,40839,13CH42,28342,78
O21,37831,83C2H44,5305,714
Cl26,57956,22C2H65,56263,80
CO1,50539,85C3H88,77984,45
CO23,64042,67C6H618,24115,4

Уравнение (1.6) можно переписать так, чтобы выразить в явном виде давление

(1.7)

(1.8)

Уравнение (1.8) содержит объем в третьей степени и, следовательно, имеет или три действительных корня, или один действительный и два мнимых. При высоких температурах уравнение (1.8) имеет один действительный корень, и по мере повышения температуры кривые, вычисленные по уравнению Ван-дер-Ваальса, приближаются к гиперболам, соответствующим уравнению состояния идеального газа.

Рис.1.4 Изотермы Ван-дер-Ваальса для СО2

На рис. 1.4 (стр. 7) приведены изотермы, вычисленные по уравнению Ван-дер-Ваальса для диоксида углерода (значения констант a и b взяты из табл. 1.3). Из рисунка видно, что при температурах ниже критической (31,04 °С) вместо горизонтальных прямых, соответствующих равновесию жидкости и пара, получаются волнообразные кривые 12345 с тремя действительными корнями, из которых только два, 1 и 5, физически осуществимы. Третий корень (точка 3) физически не реален, поскольку находится на участке кривой 234, противоречащем условию стабильности термодинамической системы . Состояния на участках 12 и 54, которые соответствуют переохлажденному пару и перегретой жидкости, соответственно, являются неустойчивыми (метастабильными) и могут быть лишь частично реализуемы в специальных условиях. Так, осторожно сжимая пар выше точки 1 (рис. 1.4), можно подняться по кривой 12. Для этого необходимо отсутствие в паре центров конденсации, и в первую очередь пыли. В этом случае пар оказывается в пересыщенном, т.е. переохлажденном состоянии. И наоборот, образованию капелек жидкости в таком паре способствуют, например, попадающие в него ионы. Это свойство пересыщенного пара используется в известной камере Вильсона (1912), применяемой для регистрации заряженных частиц. Движущаяся заряженная частица, попадая в камеру, содержащую пересыщенный пар, и соударяясь с молекулами, образует на своем пути ионы, создающие туманный след – трек, который фиксируется фотографически.

Согласно правилу Максвелла (the Maxwell construction), которое имеет теоретическое обоснование, для того, чтобы расчетная кривая соответствовала экспериментальной равновесной изотерме, нужно вместо кривой 12345 провести горизонтальную прямую 15 так, чтобы площади 1231 и 3453 были равны. Тогда ордината прямой 15 будет равна давлению насыщенного пара, а абсциссы точек 1 и 5 – мольным объемам пара и жидкости при данной температуре.

По мере повышения температуры все три корня сближаются, и при критической температуре Tc все три корня становятся равными. В критической точке изотерма Ван-дер-Ваальса имеет точку перегиба [] с горизонтальной касательной [], то есть

, (1.9)

. (1.10)

Совместное решение этих уравнений дает:

, (1.11)

, (1.12)

, (1.13)

что позволяет определять константы уравнения Ван-дер-Ваальса из критических параметров газа. Соответственно, согласно уравнению Ван-дер-Ваальса, критический фактор сжимаемости Zc для всех газов должен быть равен

(1.14)

Из таблицы 1.2 видно, что хотя значение Zc для реальных газов приблизительно постоянно (0,27 – 0,30 для неполярных молекул), оно все же заметно меньше вытекающего из уравнения Ван-дер-Ваальса. Для полярных молекул наблюдается еще большее расхождение.

Принципиальное значение уравнения Ван-дер-Ваальса определяется следующими обстоятельствами:

1) уравнение было получено из модельных представлений о свойствах реальных газов и жидкостей, а не явилось результатом эмпирического подбора функции f(p,V,T), описывающей свойства реальных газов;

2) уравнение долго рассматривалось как некоторый общий вид уравнения состояния реальных газов, на основе которого было построено много других уравнений состояния (см. ниже);

3) с помощью уравнения Ван-дер-Ваальса впервые удалось описать явление перехода газа в жидкость и проанализировать критические явления. В этом отношении уравнение Ван-дер-Ваальса имеет преимущество даже перед более точными уравнениями в вириальной форме (см. 1.1, 1.2).

Причиной недостаточной точности уравнения Ван-дер-Ваальс считал ассоциацию молекул в газовой фазе, которую не удается описать, учитывая зависимость параметров a и b от объема и температуры, без использования дополнительных постоянных. После 1873 г. сам Ван-дер-Ваальс предложил еще шесть вариантов своего уравнения, последнее из которых относится к 1911 г. и содержит пять эмпирических постоянных. Две модификации уравнения (1.5) предложил Клаузиус, и обе они связаны с усложнением вида постоянной b. Больцман получил три уравнения этого типа, изменяя выражения для постоянной a. Всего известно более сотни подобных уравнений, отличающихся числом эмпирических постоянных, степенью точности и областью применимости. Выяснилось, что ни одно из уравнений состояния, содержащих менее 5 индивидуальных постоянных, не оказалось достаточно точным для описания реальных газов в широком диапазоне p, V, T, и все эти уравнения оказались непригодными в области конденсации газов. Из простых уравнений с двумя индивидуальными параметрами неплохие результаты дают уравнения Дитеричи и Бертло (см. табл. 1.4).

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору


источники:

http://poisk-ru.ru/s26003t2.html

http://www.chem.msu.ru/rus/teaching/realgases/chap1(3).html