4 каким образом определяют количество уравнений по методу уравнений кирхгофа и контурных токов

Законы Кирхгофа для расчёта электрических цепей

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие полностью определить режим её работы.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Прежде чем перейти к самим законам Кирхгофа, дадим определение ветвей и узлов электрической цепи.

Ветвью электрической цепи называется такой её участок, который состоит только из последовательно включённых источников ЭДС и сопротивлений, вдоль которого протекает один и тот же ток. Узлом электрической цепи называется место (точка) соединения трёх и более ветвей. При обходе по соединённым в узлах ветвям можно получить замкнутый контур электрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел в рассматриваемом контуре встречается не более одного раза [1].

Первый закон Кирхгофа

Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю:

или в комплексной форме

Второй закон Кирхгофа

Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом замкнутом контуре алгебраическая сумма напряжений на сопротивлениях, входящих в этот контур, равна алгебраической сумме ЭДС:

Количество уравнений, составляемых для электрической цепи по первому закону Кирхгофа, равно $ N_\textrm<у>-1 $, где $ N_\textrm <у>$ – число узлов. Количество уравнений, составляемой для электрической цепи по второму закону Кирхгофа, равно $ N_\textrm<в>-N_\textrm<у>+1 $, где $ N_\textrm <в>$ – число ветвей. Количество составляемых уравнений по второму закону Кирхгофа легко определить по виду схемы: для этого достаточно посчитать число «окошек» схемы, но с одним уточнением: следует помнить, что контур с источником тока не рассматривается.

Опишем методику составления уравнений по законам Кирхгофа. Рассмотрим её на примере электрической цепи, представленной на рис. 1.


Рис. 1. Рассматриваемая электрическая цепь

Для начала необходимо задать произвольно направления токов в ветвях и задать направления обхода контуров (рис. 2).


Рис. 2. Задание направления токов и направления обхода контуров для электрической цепи

Количество уравнений, составляемых по первому закону Кирхгофа, в данном случае равно 5 – 1 = 4. Количество уравнений, составляемых по второму закону Кирхгофа, равно 3, хотя «окошек» в данном случае 4. Но напомним, что «окошко», содержащее источник тока $ \underline_ <1>$, не рассматривается.

Составим уравнения по первому закону Кирхгофа. Для этого «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» — со знаком «-». Отсюда для узла «1 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ \underline_<1>— \underline_<2>— \underline_ <3>= 0; $$

для узла «2 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ -\underline_<1>— \underline_ <4>+ \underline_ <6>= 0; $$

$$ \underline_<2>+ \underline_ <4>+ \underline_<5>— \underline_ <7>= 0; $$

$$ \underline_<3>— \underline_<5>— \underline_ <1>= 0. $$

Уравнение для узла «5 у.» можно не составлять.

Составим уравнения по второму закону Кирхгофа. В этих уравнениях положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура. Для контура «1 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ \underline_ \cdot \underline_ <1>+ R_ <2>\cdot \underline_<2>— \underline_ \cdot \underline_ <4>= \underline_<1>; $$

для контура «2 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ -R_ <2>\cdot \underline_ <2>+ R_ <4>\cdot \underline_ <3>+ \underline_ \cdot \underline_ <5>= \underline_<2>; $$

для контура «3 к.»:

$$ \underline_ \cdot \underline_ <4>+ (\underline_ + R_<1>) \cdot \underline_ <6>+ R_ <3>\cdot \underline_ <7>= \underline_<3>; $$

где $ \underline_ = -\frac<1> <\omega C>$, $ \underline_ = \omega L $.

Таким образом, для того, чтобы найти искомые токи, необходимо решить следующую систему уравнений:

$$ \begin \underline_<1>— \underline_<2>— \underline_ <3>= 0 \\ -\underline_<1>— \underline_ <4>+ \underline_ <6>= 0 \\ \underline_<2>+ \underline_ <4>+ \underline_<5>— \underline_ <7>= 0 \\ \underline_<3>— \underline_<5>— \underline_ <1>= 0 \\ \underline_ \cdot \underline_ <1>+ R_ <2>\cdot \underline_<2>— \underline_ \cdot \underline_ <4>= \underline_ <1>\\ -R_ <2>\cdot \underline_ <2>+ R_ <4>\cdot \underline_ <3>+ \underline_ \cdot \underline_ <5>= \underline_ <2>\\ \underline_ \cdot \underline_ <4>+ (\underline_ + R_<1>) \cdot \underline_ <6>+ R_ <3>\cdot \underline_ <7>= \underline_ <3>\end $$

В данном случае это система из 7 уравнений с 7 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

$$ \begin 1 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ \underline_ & R_ <2>& 0 & -\underline_ & 0 & 0 & 0 \\ 0 & -R_ <2>& R_ <4>& 0 & \underline_ & 0 & 0 \\ 0 & 0 & 0 & \underline_ & 0 & R_<1>+\underline_ & R_ <3>\\ \end \cdot \begin \underline_ <1>\\ \underline_ <2>\\ \underline_ <3>\\ \underline_ <4>\\ \underline_ <5>\\ \underline_ <6>\\ \underline_ <7>\\ \end = \begin 0 \\ 0 \\ 0 \\ \underline_ <1>\\ \underline_ <1>\\ \underline_ <2>\\ \underline_ <3>\\ \end $$

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

В результате получим вектор-столбец $ \underline<\bold> $ токов из семи элементов, состоящий из искомых токов, записанный в общем виде. Видим, что программный комплекс Matlab позволяет существенно упростить решение сложных систем уравнений, составленных по законам Кирхгофа.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Рекомендуемые записи

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Расчёт матриц передачи многополюсников различной формы осуществляется достаточно просто. Матрицы передачи — это математическое описание рассматриваемой…

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Метод уравнений Кирхгофа

Если электрическая цепь с помощью эквивалентных преобразований не сводится к одноконтурной цепи, то для ее расчета используются специальные методы: уравнений Кирхгофа, контурных токов, наложения, узловых потенциалов, эквивалентного генератора. Рассмотрим их.

Самым общим методом расчета электрических цепей является метод уравнении Кирхгофа. Суть его заключается в составлении системы уравнений в соответствии с первым и вторым законами Кирхгофа и решении этой системы относительно неизвестных токов. Система уравнений разрешима, если все входящие в нее уравнения являются линейно независимыми и число уравнений в системе равно числу неизвестных величин. Например, если электрическая цепь имеет у узлов и Ь ветвей, а следовательно, и Ь неизвестных токов, то необходимо составить и решить систему Ь линейно независимых уравнений. Покажем, что эти уравнения можно составить по первому и второму законам Кирхгофа.

По первому закону Кирхгофа можно составить столько уравнений, сколько узлов имеет электрическая цепь, т.е. у уравнений. Однако линейно независимыми будут только у — 1 уравнения. Покажем это на примере.

Составим уравнения по первому закону Кирхгофа для электрической схемы, у которой четыре узла и шесть ветвей (рис. 2.19).

Произвольно выберем направления токов в ветвях; тогда для первого узла /К — 4 = 0, для второго К + А — /3 = 0, для третьего /6 + /3 — /4 = 0, для четвертого /4 — /| — /5 = 0. Сложив первые три уравнения, получим — /4 + /| + /5 = 0. Умножим это уравнение на — 1. Тогда уравнение для четвертого узла можно получить линейными комбинациями из уравнений, составленных по первому закону Кирхгофа для первых у — 1 узлов.

Видно, что одно из уравнений системы, составленное по числу узлов, является зависимым. Поэтому по первому закону Кирхгофа составляется только у — 1 уравнение, т.е. на одно меньше, чем число узлов в электрической цепи. Так как в схеме четыре узла, то число уравнений, которые составляются по первому закону Кирхгофа, равно трем. Остальные п = Ь — (у — 1) линейно независимых уравнений составляются по второму закону Кирхгофа. Для рассматриваемой схемы п = 6 — (4 — 1) = 3.

Таким образом, для электрической цепи, содержащей у узлов и Ь ветвей, по второму закону Кирхгофа можно составить п = Ь — (у — 1) линейно независимых уравнений. При этом общее число уравнений, составленных по первому и второму законам Кирхгофа, будет равно числу ветвей электрической цепи.

Расчет электрических цепей с помощью законов Кирхгофа целесообразно проводить в следующем порядке.

  • 1. Определить число узлов у и число ветвей Ь в электрической цепи. В соответствии с этим найти количество уравнений, которые необходимо составить по первому и второму законам Кирхгофа.
  • 2. Обозначить на схеме цепи токи в ветвях и произвольно выбрать их направления. Выбрать независимые замкнутые контуры электрической цепи таким образом, чтобы в каждый контур, во-первых, входило возможно меньшее число ветвей и, во-вторых, чтобы в каждый последующий контур входила хотя бы одна новая ветвь. Произвольно задаться направлением обхода контуров.
  • 3. Составить)’ — 1 уравнение по первому закону Кирхгофа. При этом считать положительными токи, входящие в узел, а отрицательными — выходящие из узла, или наоборот.
  • 4. Составить п = Ь — (у — 1) уравнений по второму закону Кирхгофа. В этих уравнениях значение ЭДС берется со знаком «+», если направление ЭДС совпадает с направлением обхода контура. Падения напряжений на сопротивлениях в замкнутом контуре электрической цепи берутся со знаком «+», если направление обхода контура совпадает с выбранным направлением тока, и со знаком «-», если не совпадает.
  • 5. Решить составленную систему уравнений относительно неизвестных токов. Если при этом некоторые токи получаются отрицательными, это означает, что их действительные направления противоположны произвольно выбранным. Направления этих токов на схеме обратные.
  • 6. Проверить правильность решения задачи путем составления уравнения баланса мощности.

Пример 2.4. В электрической цепи (рис. 2.20) Е =50 В, ?3 = 10 В, Гц = 0,4 Ом, г,2 = 1 Ом, /*| = 3 Ом, /’2 = г у = 2 Ом. Требуется определить токи в ветвях.

Решение. В схеме два узла и три ветви. Следовательно, по первому закону Кирхгофа необходимо составить одно уравнение, а по второму — два. Обозначим на схеме электрической цепи узлы, токи в ветвях и стрелками произвольно укажем их положительные направления. Выберем два независимых контура и стрелками покажем направления их обхода. Составим уравнение по первому закону Кирхгофа для первого узла: /( + Л, — /3 = 0 .

Составим уравнения по второму закону Кирхгофа для выбранных независимых контуров:

Полученные уравнения образуют систему независимых уравнений с тремя неизвестными:

Решив эту систему, будем иметь: 1 = 10 А, /2 = —2А, /3 = 8 А. По полученным знакам токов устанавливаем, что действительные направления токов 1 и /3 совпадают, а тока /2 — противоположно произвольно выбранным положительным направлениям.

Правильность расчета токов проверяют по балансу мощностей.

При расчете электрических цепей с помощью законов Кирхгофа источники электрической энергии, заданные в виде источника тока, должны учитываться при составлении уравнений по первому закону Кирхгофа.

Недостатком рассмотренного метода расчета электрических цепей является его громоздкость (число уравнений равно числу ветвей).

Расчет электрической цепи по закону Кирхгофа

Содержание:

Законы Кирхгофа

Уравнения, описывающие поведение электрической цепи, составляют на основе законов Кирхгофа. Они определяют связь между токами и напряжениями элементов, образующих цепь. Уравнения, составленные согласно этим законам, называют уравнениями Кирхгофа.

Первый закон Кирхгофа определяет баланс токов в узлах электрической цепи.

Он формулируется следующим образом:

Алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю:

В уравнении (3.1) токи, направленные от узла, записывают с положительным знаком. Токи, направленные к узлу, записывают со знаком минус.

Система уравнений по первому закону Кирхгофа, записанная для всех узлов цепи, линейно зависима. В этом легко убедиться, сложив все уравнения. Поскольку ток каждой ветви входит в два уравнения с разными знаками, сумма тождественно равна нулю. Поэтому число независимых уравнений по первому закону Кирхгофа равно , где — число узлов цепи.

Второй закон Кирхгофа устанавливает баланс напряжений в контуре цепи:

Алгебраическая сумма напряжений ветвей в контуре равна нулю:

Если напряжение ветви совпадает с направлением обхода контура, то напряжению приписывают знак плюс, если же нет — знак минус. Перенесем напряжения источников напряжения, равные ЭДС этих источников, в правую часть. Уравнение (3.2) примет вид

В соответствии с последним равенством алгебраическая сумма напряжений ветвей в контуре электрической цепи равна алгебраической сумме ЭДС источников.

Число независимых уравнений, записанных по второму закону Кирхгофа, равно числу независимых контуров. Число таких контуров определяется формулой , где — число ветвей.

Возможно вам будут полезны данные страницы:

Порядок составления уравнений но законам Кирхгофа

1. Необходимо сначала выбрать положительные направления токов и напряжений ветвей. Положительное направление тока показывают стрелкой на выводе элемента. Положительное направление напряжения показывают стрелкой, расположенной рядом с элементом. Полярности напряжений резисторов выбирают согласованными с направлениями токов. Направления токов источников напряжения выбирают совпадающими с направлениями ЭДС.

2. Записываем уравнения по первому закону Кирхгофа для узлов.

3. Выбираем направления обхода контуров и записываем уравнения по законам Кирхгофа. Сопротивление проводника, соединяющего элементы, очень мало по сравнению с сопротивлением резистора и игнорируется. Ячейки внутренней цепи удобно выбирать в качестве независимых цепей. Можно воспользоваться и другим способом: выбрать по порядку контуры, так, чтобы каждый следующий контур содержал, по меньшей мере, одну ветвь, не входящую в предыдущие контуры.

4. Решаем полученную систему уравнений и определяем токи и напряжения цепи.

5. После определения токов и напряжений необходимо выполнить проверку. Для этого вычисленные значения переменных подставляют в одно из уравнений, составленных по законам Кирхгофа.

При составлении уравнений в качестве неизвестных рассматривают либо токи, либо напряжения резистивных элементов.

В первом случае уравнения цепи составляют относительно неизвестных токов резистивных элементов и напряжений на источниках тока. Напряжения на резистивных элементах, входящие в уравнения по второму закону Кирхгофа, выражают через токи по закону Ома. Такой способ составления уравнений называют токов ветвей.

Число совместно решаемых уравнений в методе токов ветвей можно сократить, если контуры выбирать так, чтобы они не включали источники тока. В этом случае неизвестными будут только токи резистивных элементов, и по второму закону Кирхгофа достаточно составить уравнений, где — количество источников тока.

Во втором случае уравнения цепи составляются относительно напряжений резистивных элементов и токов источников напряжения. Токи резисторов представляют произведением проводимости на напряжение на резисторе. Этот способ составления уравнений называют методом напряжений ветвей.

В дальнейшем для решения задач мы будем использовать в основном метод токов ветвей.

Пример 3.1. Записать уравнения Кирхгофа для цепи, показанной на рис. 3.1.

Решение. Сначала выберем направления токов резистивных элементов и пронумеруем узлы. Неизвестными являются токи резистивных элементов . Поэтому необходимо составить пять уравнений. Цепь содержит четыре узла; это означает, что по первому закону Кирхгофа можно составить три уравнения. Число уравнений по второму закону Кирхгофа равно двум.

Запишем уравнения по первому закону Кирхгофа для узлов 1, 2, 3. Контуры I и II выберем так, чтобы они не включали источник тока, иначе в системе уравнений появится дополнительная переменная — напряжение источника тока. Направления обхода контуров выберем совпадающими с направлением движения часовой стрелки. В результате получим систему из пяти уравнений с пятью неизвестными токами:

Узел 1: ;

Узел 2: ;

Узел З: ;

Контур I:

Контур II:

Для решения системы уравнений целесообразно использовать математические пакеты, например MathCAD или Matlab.

Напряжение на зажимах источника тока можно затем найти, записав уравнения для контуров, включающих или

Пример задачи с решением 3.2.

Рассчитать токи в цепи, изображенной на рис. 3.2. Номиналы элементов: ,

Решение. Сначала выберем направления токов резистивных элементов и пронумеруем узлы. В рассматриваемой схеме шесть неизвестных токов , следовательно, необходимо составить шесть независимых уравнений. Цепь содержит четыре узла; это означает, что по первому закону Кирхгофа можно составить три уравнения. Еще три уравнения составим по второму закону Кирхгофа. Наличие источника тока учитывалось при определении числа уравнений по второму закону Кирхгофа.

Составим уравнения по первому закону Кирхгофа для узлов 1, 2 и 3. Уравнения по второму закону Кирхгофа запишем для контуров I, II, III. Направление обхода контуров выбираем по часовой стрелке.

В результате получим систему из шести уравнений с шестью неизвестными токами:

В матричной форме записи:

Решением системы уравнений являются следующие значения токов:

Знак минус в численных значениях токов означает, что направление токов при заданных условиях выбрано навстречу истинному.

На странице -> решение задач по электротехнике собраны решения задач и заданий с решёнными примерами по всем темам теоретических основ электротехники (ТОЭ).

Услуги:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://ozlib.com/866494/tehnika/metod_uravneniy_kirhgofa

http://natalibrilenova.ru/raschet-elektricheskoj-tsepi-po-zakonu-kirhgofa/