4 канонические и параметрические уравнения прямой проходящей через точку перпендикулярно грани

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через данную точку и перпендикуляной данной плоскости. Дается подробное решение с пояснениями. Для построения уравнения прямой введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости

Наша цель построить уравнение прямой, проходящей через данную точку M0 и перпендикулярной к данной плоскости Ax+By+Cz+D=0.

Общее уравнение плоскости имеет вид:

(1)

где n(A,B,C)− называется нормальным вектором плоскости.

Уравнение прямой, проходящей через точку M0(x0, y0, z0) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:

(2)

Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .

Таким образом, уравнение прямой, проходящей через точку M0(x0, y0, z0) и ортогональный плоскости (1) имеет следующий вид:

(3)

Пример 1. Построить прямую, проходящую через точку M0(5, -4, 4) и перпендикулярной плоскости

Общее уравнение плоскости имеет вид (1), где :

(4)

Подставляя координаты точки M0(5, -4, 4) и координаты нормального вектора плоскости (4) в (3), получим:

Уравнения прямой в пространстве

Параметрические уравнения прямой l в пространстве:

(15)

где – фиксированная точка прямой;

– направляющий вектор прямой l, т.е. любой вектор, параллельный l;

t – числовой параметр.

Каждому значению параметра соответствует единственная точка прямой l.

Канонические уравнения прямой:

. (16)

Уравнения прямой, проходящей через две данные точки и :

. (17)

Углом между прямыми называют угол между их направляющими векторами =<m1; n1; p1> и =<m2; n2; p2>, или дополнительный к нему (обычно берется острый угол), то есть

. (18)

Углом между плоскостью и прямой l (в случае их пересечения) называется угол между прямой и её проекцией на плоскость. Синус угла между плоскостью и прямой определяется по формуле:

. (19)

Примерный вариант и образец выполнения

РГЗ №1

Задача 1. Даны координаты вершин треугольника АВС:

Требуется: 1) вычислить длину стороны ВС;

2) составить уравнение стороны ВС;

3) найти внутренний угол треугольника при вершине В;

4) составить уравнение высоты АК, проведенной из вершины А;

5) найти координаты центра тяжести однородного треугольника (точки пересечения его медиан);

6) сделать чертеж в системе координат.

Задача 2.Даны координаты точек – вершин пирамиды ABCD:

1) вычислить длину ребра AB;

2) найти уравнение плоскости грани ABC;

3) найти угол между гранями ABC и BCD;

4) составить параметрические уравнения прямой AB;

5) составить канонические уравнения высоты пирамиды DK, проведенной из вершины D;

6) найти координаты точки пересечения DK и грани ABC;

7) найти угол между ребрами AB и BC;

8) найти угол между ребром AD и гранью ABC;

9) сделать чертеж пирамиды в системе координат.

Решение задачи 1.

1) Вычислим длину стороны ВС по формуле (1):

||= =

2) Составим уравнение стороны ВС, используя формулу (8):

y = –2x + 14 – уравнение ВС.

3) Внутренний угол треугольника при вершине В найдем как угол между прямыми ВА и ВС. Для этого сначала вычислим угловой коэффициент прямой ВА по формуле (7):

и возьмем из уравнения ВС угловой коэффициент прямой ВС: .

Из расположения точек A, B, C на координатной плоскости видно, что угол В в треугольнике ABC – острый, поэтому по формуле (11) вычислим

.

4) Для получения уравнения высоты АK, проведенной из вершины А, используем уравнение пучка прямых (6) и условие перпендикулярности прямых (10). Сначала вычислим угловой коэффициент прямой АK . Так как , то .

Уравнение AK получим по формуле (6):

ууА = kAK(xxA) у – (–1) = (x– (–3))

5) Для определения координат центра тяжести треугольника используем свойство точки пересечения его медиан: если – медиана треугольника и P – точка пересечения его медиан, то P делит в отношении 2 : 1, начиная от точки А, т.е. .

Основание медианы – точка М является серединой отрезка ВС. Найдем координаты точки М по формулам (3):

М(6; 2).

Теперь, когда координаты концов отрезка известны, найдем координаты точки P, которая делит в отношении = 2, начиная от точки А, по формулам деления отрезка в заданном отношении (2):

P(3; 1) – центр тяжести треугольника АВС.

6) Построим чертеж к задаче в системе координат ХОY (рис. 3). Полученные при решении задачи результаты не противоречат чертежу.

1) длина стороны || = ;

2) уравнение стороны ВС: y = –2x + 14;

3) угол при вершине В: ;

4) уравнение высоты АK: x –2y + 1 = 0;

5) координаты центра тяжести треугольника P(3; 1);

6) чертеж на рис. 3.

Решение задачи 2.

1) Длину ребра найдем по формуле:

2) Чтобы получить уравнение плоскости грани ABC, необходимо найти вектор, перпендикулярный плоскости ABC, т.е. вектор, перпендикулярный векторам и . Одним из таких векторов является векторное произведение на . Для того, чтобы найти его, сначала вычислим координаты векторов по формулам:

= <–3–(–2); 2–1; –1–1>= <–1; 1; –2>,

=<7; –3; –3>.

Найдем векторное произведение и :

В качестве вектора нормали к плоскости ABC можно взять любой вектор, коллинеарный полученному, например, = <9; 17; 4>. Используем уравнение плоскости, проходящей через точку перпендикулярно вектору (формула (12):

– уравнение плоскости грани ABC.

3) Прежде, чем найти угол между гранями ABC и BCD, получим уравнение грани BCD, используя уравнение плоскости, проходящей через три заданные точки (формула (13):

– уравнение грани BCD.

Из уравнения плоскости BCD возьмем координаты вектора нормали , перпендикулярного этой плоскости: =<3; 7; –4>.

Косинус угла между плоскостями (гранями) ABC и BCD найдем по формуле(14):

Отсюда .

4) Уравнения ребра AB можно записать как параметрические уравнения прямой, проходящей через точку A(–2;1;1) и имеющей направляющий вектор = <–1; 1; –2>(формулы (15)):

– параметрические уравнения AB.

Другой способ: можно использовать уравнения прямой, проходящей через две точки (формулы (17)):

откуда, обозначив каждую из дробей буквой t, получаем:

– параметрические уравнения AB.

5) Высота пирамиды DK – это прямая, проведенная из вершины D перпендикулярно грани ABC. Она имеет направляющий вектор , коллинеарный вектору нормали плоскости ABC. Можно взять, например, = = <9; 17; 4>. Запишем канонические уравнения высоты DK, используя точку D(–1; 0; –3) и вектор = <9; 17; 4>(формулы (16)):

– канонические уравнения DK.

6) Прежде, чем найти точку пересечения DK и грани ABC, получим параметрические уравнения прямой DK.Обозначив каждую из дробей в канонических уравнениях буквой t, получаем:

– параметрические уравнения DK.

Точка пересечения DK и грани ABC (точка К) лежит на прямой, а значит, имеет координаты , и принадлежит плоскости, т.е. ее координаты удовлетворяют уравнению плоскости ABC. Поэтому координаты точки K найдем, решив систему:

Решим последнее уравнение относительно t:

Вычислим координаты точки K, подставив найденное значениепараметра t в первые три уравнения системы:

Итак, точка пересечения DK и грани ABC: .

7) Угол между ребрами AB и BC найдем, как угол между направляющими векторами прямых AB и BC: = <–1; 1; –2>и =<8; –4; –1>. Вычислим косинус угла по формуле (18):

Тогда угол между ребрами AB и BC:

8) Чтобы определить угол между ребром AD и гранью ABC, найдем направляющий вектор прямой: =<1; –1; –4>. Плоскость ABC имеет вектор нормали = <9; 17; 4>. Синус угла между прямой и плоскостью ABC можно вычислить по формуле (19):

Тогда угол между ребром AD и гранью ABC:

9) Выполним чертеж пирамиды в системе координат (рис.4).

1)

2) АВС:

3) ;

4)

5) DK: ; 6) ;

7) ; 8) ;

Уравнения прямой, которая проходит через заданную точку и перпендикулярна к заданной плоскости.

В этой статье мы разберемся с нахождением уравнений прямой, которая в прямоугольной системе координат в трехмерном пространстве проходит через заданную точку и перпендикулярна к заданной плоскости. Сначала разберем принцип составления уравнений такой прямой, после чего перейдем к решению задач.

Навигация по странице.

Принцип составления уравнений прямой, проходящей через заданную точку перпендикулярно к заданной плоскости.

Прежде чем приступить к составлению уравнений прямой, которая проходит через заданную точку пространства перпендикулярно к заданной плоскости, освежим в памяти один момент.

В 10 классе на уроках геометрии доказывается теорема: через любую точку трехмерного пространства проходит единственная прямая, перпендикулярная к заданной плоскости. Таким образом, мы можем определить конкретную прямую, указав точку, через которую она проходит, и плоскость, к которой она перпендикулярна.

Сформулируем условие задачи.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана точка , плоскость и требуется написать уравнения прямой a , проходящей через точку М1 перпендикулярно к заданной плоскости .

Решим эту задачу.

Нам известны координаты точки M1 , через которую проходит прямая a , уравнения которой нам требуется найти. Но этого мало, чтобы записать уравнения прямой a . Если мы будем знать еще координаты направляющего вектора прямой a , то сможем записать канонические уравнения прямой a в пространстве и параметрические уравнения прямой a в пространстве.

Как же определить координаты направляющего вектора прямой a ? Да очень просто. Так как по условию прямая a перпендикулярна к плоскости , то нормальный вектор плоскости является направляющим вектором прямой a . Таким образом, нам остается отыскать координаты нормального вектора плоскости , принять их за соответствующие координаты направляющего вектора прямой a и записать требуемые уравнения прямой a .

В свою очередь координаты нормального вектора плоскости находятся в зависимости от способа задания плоскости в прямоугольной системе координат Oxyz . Если плоскости в прямоугольной системе координат Oxyz отвечает общее уравнение плоскости вида , то нормальным вектором плоскости является вектор . Если плоскость задается уравнением плоскости в отрезках , то от него следует перейти к общему уравнению плоскости , откуда станут видны координаты нормального вектора плоскости : . Если плоскость задана каким-либо другим способом (например, с помощью трех точек, не лежащих на одной прямой, или с помощью уравнений двух пересекающихся прямых, или с помощью уравнений двух параллельных прямых), то на основании этих данных следует определить общее уравнение плоскости , откуда получить координаты ее нормального вектора.

Итак, задача нахождения уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к заданной плоскости, решена. Осталось лишь рассмотреть несколько решенных примеров.

Примеры нахождения уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к заданной плоскости.

В этом пункте статьи мы приведем подробные решения наиболее характерных задач, в которых находятся уравнения прямой, проходящей через заданную точку пространства перпендикулярно к заданной плоскости.

Начнем с самого простого случая, когда требуется написать уравнения прямой, проходящей через заданную точку перпендикулярно к одной из координатных плоскостей.

Напишите канонические уравнения прямой a , которая проходит через точку и перпендикулярна координатной плоскости Oyz .

Нормальным вектором координатной плоскости Oyz является координатный вектор . Так как прямая a перпендикулярна плоскости Oyz , то является ее направляющим вектором. Итак, мы знаем координаты точки, лежащей на прямой a , и координаты ее направляющего вектора, то есть, можем написать ее канонические уравнения: .

.

Аналогично решается задача, в условии которой даны координаты точки, через которую проходит прямая, и задана плоскость с помощью общего уравнения плоскости.

Составьте параметрические уравнения прямой a , проходящей через точку перпендикулярно к плоскости .

Направляющим вектором прямой a является нормальный вектор плоскости , то есть, . Теперь мы можем записать требуемые уравнения прямой a . Они имеют вид .

.

В заключении рассмотрим пример составления уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к плоскости, заданной тремя не лежащими на одной прямой точками.

В прямоугольной системе координат Oxyz в трехмерном пространстве заданы три точки . Напишите уравнения прямой a , проходящей через начало координат перпендикулярно к плоскости ABC .

Направляющим вектором прямой, проходящей через начало координат перпендикулярно к плоскости АВС , является нормальный вектор плоскости АВС . Нормальным вектором плоскости АВС является векторное произведение векторов и . Найти указанное векторное произведение мы сможем, если будем знать координаты векторов и . Вычислим координаты векторов и по координатам точек А , В и С (при необходимости смотрите статью нахождение координат вектора по координатам точек его конца и начала): .

Тогда, , а в координатной форме (при необходимости обращайтесь к статье координаты вектора).

Теперь мы можем записать требуемые уравнения прямой a , которая проходит через точку и перпендикулярна к плоскости ABC : .

Приведем второй способ решения этой задачи.

Составим уравнение плоскости, проходящей через три заданные точки А , В и С , , откуда виден нормальный вектор этой плоскости . Далее принимаем этот вектор за направляющий вектор прямой a и записываем ее уравнения.

.


источники:

http://lektsii.org/11-1720.html

http://www.cleverstudents.ru/line_and_plane/line_passes_through_point_perpendicular_to_plane.html