4 решить уравнение х2 4 0 в ответе указать наибольший корень

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение уравнений и неравенств с модулями.

Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями. Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> |x| или abs(x) — модуль x

Введите уравнение или неравенство с модулями
Решить уравнение или неравенство

Немного теории.

Уравнения и неравенства с модулями

В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что \( |x-a| \) — это расстояние на числовой прямой между точками x и a: \( |x-a| = \rho (x;\; a) \). Например, для решения уравнения \( |x-3|=2 \) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: \( x_1=1 \) и \( x_2=5 \).

Решая неравенство \( |2x+7| 0 \), то уравнение \( |f(x)|=c \) равносильно совокупности уравнений: \( \left[\begin f(x)=c \\ f(x)=-c \end\right. \)
2) Если \( c > 0 \), то неравенство \( |f(x)| c \) равносильно совокупности неравенств: \( \left[\begin f(x) c \end\right. \)
4) Если обе части неравенства \( f(x) 0. Значит, |2х – 4| = (2х – 4), |х + 3| = (х + 3). Таким образом, на рассматриваемом промежутке заданное уравнение принимает вид: (2х – 4) + (х + 3) = 8. Решив это уравнение, находим: х = 3. Это значение принадлежит рассматриваемому промежутку, а потому является корнем заданного уравнения.
Итак, \(x_1=-1, \; x_2=3 \).

Второй способ
Преобразуем уравнение к виду 2|x – 2| + |x + 3| = 8. Переведём эту аналитическую модель на геометрический язык: нам нужно найти на координатной прямой такие точки М(х), которые удовлетворяют условию \( 2\rho(x; \;2)+ \rho(x; \;-3) =8 \) или
MA + 2MB = 8
( здесь A = A(–3), B = B(2) ).

Интересующая нас точка М не может находиться левее точки А, поскольку в этом случае 2MB > 10 и, следовательно, равенство MA + 2MB = 8 выполняться не может.
Рассмотрим случай, когда точка \( M_1(x) \) лежит между А и В. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(2 – х) = 8,
откуда находим: x = –1.
Рассмотрим случай, когда точка \( M_2(x) \) лежит правее точки B. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(х – 2) = 8,
откуда находим: х = 3.
Ответ: –1; 3.

Пусть теперь требуется решить неравенство \( |f(x)| |f(x)| \). Отсюда сразу следует, что \( g(x) > 0 \). Воспользуемся тем, что при \( g(x) > 0 \) неравенство \( |f(x)| 0, \\ -g(x) 0 \\ f(x) -g(x) \end\right. \)

Третий способ.
Воспользуемся тем, что при \( g(x) > 0 \) обе части неравенства \( |f(x)| 0 \\ (f(x))^2 0 \\ x^2 — 3x + 2 -(2x — x^2) \end\right. \)
Решая эту систему, получаем:
\( \left\<\begin x(x — 2) 0 \\ (x^2 — 3x + 2)^2 0 \end\right. \Rightarrow \)
\( \left\<\begin 0 0 \end\right. \Rightarrow \)
\( \left\<\begin 0 0<,>5 \end\right. \)
Из последней системы находим: \( 0<,>5 g(x) \). Освободиться от знака модуля можно тремя способами.

Первый способ
Если \(f(x) \geqslant 0\), то \( |f(x)| = f(x) \) и заданное неравенство принимает вид \( f(x) > g(x) \).
Если \(f(x) g(x) \).
Таким образом, задача сводится к решению совокупности двух систем неравенств:
\( \left\<\begin f(x) \geqslant 0 \\ f(x) > g(x) \end\right. \) \( \left\<\begin f(x) g(x) \end\right. \)

Второй способ.
Рассмотрим два случая: \( g(x) \geqslant 0, \; g(x) g(x) \) выполняется для всех x из области определения выражения f(x).
Если \( g(x) \geqslant 0 \), то воспользуемся тем, что согласно утверждению 3) в самом начале данной теории неравенство \( |f(x)| > g(x) \) равносильно совокупности неравенств \( f(x) g(x) \).
Таким образом, заданное неравенство сводится к совокупности трёх систем:
\( \left\<\begin g(x) g(x) \end\right. \)

Третий способ.
Воспользуемся тем, что при \( g(x) \geqslant 0 \) неравенство \( |f(x)| > g(x) \) равносильно неравенству \( (|f(x)|)^2 > (g(x))^2 \). Это позволит свести неравенство \( |f(x)| > g(x) \) к совокупности систем:
\( \left\<\begin g(x) (g(x))^2 \end\right. \)

ПРИМЕР 5. Решить неравенство \( |x^2 — 3x + 2| \geqslant 2x — x^2 \)

Первый способ
Задача сводится к решению совокупности двух систем неравенств:
\( \left\<\begin x^2 — 3x + 2 \geqslant 0 \\ x^2 — 3x + 2 \geqslant 2x — x^2 \end\right. \) \( \left\<\begin x^2 — 3x + 2 0 \), то заданное неравенство равносильно совокупности двух неравенств:
\( \left[\begin x^2 — 3x + 2 \geqslant 2x — x^2 \\ x^2 — 3x + 2 \leqslant -(2x — x^2) \end\right. \)
Таким образом, получаем совокупность неравенства и двух систем неравенств:
\( 2x — x^2 \leqslant 0; \) \( \left\<\begin 2x — x^2 > 0 \\ x^2 — 3x + 2 \geqslant 2x — x^2; \end\right. \) \( \left\<\begin 2x — x^2 > 0 \\ x^2 — 3x + 2 \leqslant -(2x — x^2) \end\right. \)
Решив неравенство \( 2x — x^2 \leqslant 0 \), получим: \( x \leqslant 0,\; x \geqslant 2 \)
Решив первую систему, получим: \( 0 0 \), то обе части заданного неравенства можно возвести в квадрат. Таким образом, получаем совокупность неравенства и системы неравенств:
\( 2x — x^2 \leqslant 0; \) \( \left\<\begin 2x — x^2 > 0 \\ (x^2 — 3x + 2)^2 \geqslant (2x — x^2)^2 \end\right. \)
Решив неравенство \( 2x — x^2 \leqslant 0 \), получим: \( x \leqslant 0,\; x \geqslant 2 \)
Решая систему, получаем последовательно:
\( \left\<\begin x(x — 2)

Калькулятор Уравнений. Решение Уравнений Онлайн

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

x²-4x-4=0 (x в квадрате минус 4 умножить на x минус 4 равно 0) решить через дискриминант и по теореме Виета, найти корни.

Калькулятор квадратных уравнений

Введите данные:

Округление:

Уравнение:

\(a * x^ <2>+ b * x + c\) = \(-1 * x^ <2>— 4 * x — 4\) = 0

Дискриминант:

\(D = b^ <2>— 4 * a * c\) = \((-4)^ <2>— 4 *(-1) *(-4)\) = \(16 — 16\) = 0

Корни квадратного уравнения:

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\fracx^<2>+\frac*x+\frac\) = \(x^<2>+\frac<-4><-1>*x+\frac<-4><-1>\) = \(x^ <2>+ 4 * x + 4\)

Итого, имеем приведенное уравнение:
\(x^ <2>+ 4 * x + 4 = 0\)

Теорема Виета выглядит следующим образом:
\(x_<1>*x_<2>=c\)
\(x_<1>+x_<2>=-b\)

Мы получаем следующую систему уравнений:
\(x_<1>*x_<2>=4\)
\(x_<1>+x_<2>=-4\)

Методом подбора получаем:
\(x_ <1>= x_ <2>= -2\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_<1>)*(x-x_<2>) = 0\)

То есть у нас получается:
\(-1*(x+2)*(x+2) = 0\)


источники:

http://mathdf.com/equ/ru/

http://calcon.ru/xz2-4x-4p0p0-reshit/