6 cosx sinx tgx ctgx 0 решить уравнение

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение тригонометрических уравнений.

Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите тригонометрическое уравнение
Решить уравнение

Немного теории.

Тригонометрические уравнения

Уравнение cos(х) = а

Из определения косинуса следует, что \( -1 \leqslant \cos \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.

Уравнение cos x = а, где \( |a| \leqslant 1 \), имеет на отрезке \( 0 \leqslant x \leqslant \pi \) только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right] \); если a

Уравнение sin(х) = а

Из определения синуса следует, что \( -1 \leqslant \sin \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.

Уравнение sin х = а, где \( |a| \leqslant 1 \), на отрезке \( \left[ -\frac<\pi><2>; \; \frac<\pi> <2>\right] \) имеет только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right] \); если а

Уравнение tg(х) = а

Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Уравнение tg x = а для любого a имеет на интервале \( \left( -\frac<\pi><2>; \; \frac<\pi> <2>\right) \) только один корень. Если \( |a| \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right) \); если а

Решение тригонометрических уравнений

Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.

Уравнения, сводящиеся к квадратным

Решить уравнение 2 cos 2 (х) — 5 sin(х) + 1 = 0

Заменяя cos 2 (х) на 1 — sin 2 (х), получаем
2 (1 — sin 2 (х)) — 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) — 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y — 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = — 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; \( x = (-1)^n \text(0,5) + \pi n = (-1)^n \frac<\pi> <6>+ \pi n, \; n \in \mathbb \)
Ответ \( x = (-1)^n \frac<\pi> <6>+ \pi n, \; n \in \mathbb \)

Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) — 4 = 0

Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 — sin 2 (6х)) + 4 sin(6х) — 4 = 0 => 3 sin 2 (6х) — 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 — 4y +1 =0, откуда y1 = 1, y2 = 1/3

Уравнение вида a sin(x) + b cos(x) = c

Решить уравнение 2 sin(x) + cos(x) — 2 = 0

Используя формулы \( \sin(x) = 2\sin\frac <2>\cos\frac<2>, \; \cos(x) = \cos^2 \frac <2>-\sin^2 \frac <2>\) и записывая правую часть уравпения в виде \( 2 = 2 \cdot 1 = 2 \left( \sin^2 \frac <2>+ \cos^2 \frac <2>\right) \) получаем

Поделив это уравнение на \( \cos^2 \frac <2>\) получим равносильное уравнение \( 3 \text^2\frac <2>— 4 \text\frac <2>+1 = 0 \)
Обозначая \( \text\frac <2>= y \) получаем уравнение 3y 2 — 4y + 1 = 0, откуда y1=1, y1= 1/3

В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях \( a \neq 0, \; b \neq 0, \; c \neq 0, \; c^2 \leqslant b^2+c^2 \) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на \( \sqrt \):

Решить уравнение 4 sin(x) + 3 cos(x) = 5

Здесь a = 4, b = 3, \( \sqrt = 5 \). Поделим обе части уравнения на 5:

Уравнения, решаемые разложением левой части на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Решить уравнение sin(2х) — sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) — sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x — 1) = 0

Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х — х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0

Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) — sin 2 (x), то
cos(2x) = 1 — sin 2 (x) — sin 2 (x), cos(2x) = 1 — 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 — cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 — cos(2x)) + 2 (1 — cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0

Решение тригонометрических уравнений

Данный калькулятор предназначен для решения тригонометрических уравнений.
Тригонометрические уравнения – это уравнения, которые содержат в себе тригонометрические функции неизвестного аргумента. Под тригонометрическими функциями понимают математические функции от величины угла. Как правило, тригонометрические функции определяются как отношения сторон прямоугольного треугольника или длины определенных отрезков в единичной окружности.

К основным видам тригонометрических уравнений относят простейшие уравнения, содержащие модуль, с параметрами, с целой и дробной частью, со сложными аргументами, с обратными тригонометрическими функциями.

С помощью калькулятора можно вычислить корни тригонометрического уравнения.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Решение тригонометрических уравнений с помощью подстановок: sinx+cosx=t, sinx-cosx=t, tgx+ctgx=t, tgx-ctgx=t

Разделы: Математика

Классы: 10 , 11

Цели:

1). Образовательные:

  • Определение уровня овладения знаниями, повторение решения уравнений, решаемые с помощью вспомогательных аргументов.
  • Коррекция знаний, умений, навыков.
  • Организовать деятельность, направленную на выполнение постепенно усложняющихся заданий. Рассмотреть уравнения, решаемые с помощью подстановок.
  • Учащиеся должны творчески применять знания, учится переносить в новые ситуации, применять в данной теме ранее полученные знания.

2) Развивающие:

  • Развивать у учащихся способность самостоятельно применять полученные знания в нестандартных ситуациях.
  • Развивать у учащихся творческий подход к предложенным заданиям.
  • Развивать у учащихся переносить приобретённые знания в новые условия.

3) Воспитательные задачи:

  • Формирование самостоятельности, мыслительной активности.

Ход урока

  1. Повторение. Рассмотрение свойств тригонометрических функций, применяемых при решении уравнений.
  2. Объяснение нового материала. Рассмотрение уравнений, которые решаются с помощью замены.
  3. Закрепление нового материала.
  4. Самостоятельная работа.
  5. Домашнее задание.

Вместе с учащимися разбираются свойства:

1) Выразить sinx cosx, если известно, что sinx +cosx= 3/4.

(sinx +cosx) 2 = sin 2 x +cos 2 x +2 sinx cosx.

2 sinx cosx = 9/16 — 1= — 7/ 16, следовательно sinx cosx = -7/32.

2) Выразить tg 2 x+ctg 2 x, если tgx+ctgx=3.

9= (tgx+ctgx) 2 = tg 2 x+ctg 2 x + 2tgx ctgx= tg 2 x+ctg 2 x + 2.

Следовательно tg 2 x+ctg 2 x = 7.

Вместе с учащимися разбирается уравнение, в котором используется одно из выведенных свойств.

№ 1. Используем эту подстановку при решении уравнения sin 2 x – 4 sin x = 4 + 4 cos x.

4(sin x + cos x) – 2 sin x cos x +4 = 0.

Введем обозначение: sin x + cos x = t , тогда 2sin x cos x = t 2 -1.

4 t – ( t 2 — 1) + 4 = 0,

Решая квадратное уравнение, получаем t1 = 5, t2 = -1.

1) sin x + cos x = 5

Нет решения, так как ¦ sin x¦ 1 , ¦cos x¦ 1.

2) sin x + cos x = — 1

Применим способ введения вспомогательной переменной.

Разделим почленно данное уравнение на .

cos / 4 * sin x + sin / 4 * cos x = — / 2;

sin (x + / 4) = — / 2.

Решая тригонометрическое уравнение, получаем:

x + / 4 = — / 4 + 2n или x + / 4= 5/ 4 + 2 n, где n Z.

Ответ: /2 + 2 n; + 2n, где n Z.

Закрепление уравнений данного типа (у доски — учащийся):

№ 2. 2 cos x – sin 2x = 2 +2 sinx.

2 (sinx – cosx) + 2 sinx + 2 = 0

Введем обозначение: sin x — cos x = t, тогда 2sin x cos x = 1 — t 2 .

Решая квадратное уравнение, получаем: t1= 3 , t2 = -1.

1) sin x + cos x = 3. Нет решения, так как ¦ sin x¦ 1 , ¦cos x¦ 1.

2) sin x — cos x = — 1.

Применим способ введения вспомогательной переменной.

Разделим почленно данное уравнение на .

cos / 4 * sin x — sin / 4 * cos x = — / 2.

sin ( x — / 4 ) = — / 2.

Решая тригонометрическое уравнение, получаем :

x — / 4 = — / 4 + 2 n или x — / 4 = 5 / 4 + 2 n , где n Z.

Ответ: 2 n ; 3 / 2 + 2 n , где n Z.

№ 3. sin 2x + 3(sin x-cos x ) =5.

Уравнение решается самостоятельно с последующей проверкой.

Применяя данную подстановку, получаем: t 2 — 3t +4 = 0.

t1 = 2 , t2 =

sin x + cos x =2.

Нет решения, так как ¦ sin x¦ 1, ¦cos x¦ 1.

2) sin x — cos x = .

Применим способ введения вспомогательной переменной .

Разделим почленно данное уравнение на .

sin ( x — / 4 ) = 1.

x — / 4 = / 2 + 2 n или x = 3/ 4 + 2 n, где n Z .

Ответ: 3/ 4 + 2 n, где n Z .

№ 4. Применим еще одну подстановку.

4tg 2 x+ctg 2 x +6tgx-3 ctg x-8 =0.

4tg 2 x+ctg 2 x – 4 = t 2 , получаем:

2tg x- ctg x = — 4.

2tg x- 1/tg x = — 4

2 tg 2 x+ 4tg x — 1 =0.

t1 = (-2 + )/2, t 2 = (-2 — )/2.

х= arc tg (-2 + )/2 + n или х= arc tg (-2 — )/2 + n , где n Z .

Ответ: arctg (-2 + )/2 + n , arctg (-2 — )/2 + n , где n Z .

№ 5. Закрепление темы:

tg 2 x+ctg 2 x -3(tgx+ ctg x) + 4=0.

tg x + ctg x = t, получаем:

Решая квадратное уравнение , получаем: t1 = — 2 , t2 = — 1.

tg 2 x- 2tg x + 1 =0,

x = /4 + n, где n Z .

tg x + ctg x = -1 не имеет решения.

Ответ: / 4 + n, где n Z .

№ 6.Решим уравнение (учащиеся решают самостоятельно с последующей проверкой):

2(tgx+ ctg x)= (tg 2 x+ctg 2 x) — 2=0.

Проверка по этапам:

Квадратное уравнение относительно t: t 2 — 2 t = 0.

Корни уравнения: t=0 или t= 2/,

Ответ: n; arc tg(3)/2 + n, где n Z .

Далее рассматриваются более сложные уравнения, содержащие модули.

¦ sin x + cos x¦ = 1+2 sin x.

Применяя подстановку: sin x + cos x = t, получаем: ¦ t¦= t 2 .

Решая уравнения с модулем, получаем:

t = 0 или t= 1 , t = -1.

Далее решаем уже рассмотренные уравнения:

sin x + cos x = 0,

Объединяя решения, получаем ответ:

Ответ: — /4+ n ; /2 n, где n Z .

Далее предлагается учащимся уравнения для самостоятельной проработки:

1) 3 (sin x + cos x ) = 2 sin2 x,

2) 1 + sin2 x = sin x + cos x,

3) sin x + cos x — sin 2x + cos2 x – cos3 x = 1,

4) sin2 x — 5sin x + 5 cos x + 5 = 0,

5) tgx+ ctg x = 3 — sin2 x,

6) 2(sin2 x – cos2 x) = tgx+ ctg x.

Решение данных уравнений разбирается на следующих занятиях.


источники:

http://allcalc.ru/node/669

http://urok.1sept.ru/articles/658341