7 класс алгебра решение систем линейных уравнений методом сложения

Урок по алгебре в 7-м классе на тему: «Решение систем линейных уравнений способом сложения»

Разделы: Математика

1. Научить решать системы уравнений способом сложения;

2. Отработать алгоритм решения систем уравнений методом подстановки и сложения;

3. Воспитание внимания, точности, логики рассуждения.

Оборудование : учебник Ю.Н. Макарычев, Н.Г. Миндюк, Алгебра-7 класс, проверочный материал.

Ход урока

I. Организационный момент:

Сегодня на уроке мы должны научиться решать системы уравнений способом сложения.

II. Устный счет:

  1. Дано уравнение 4x-3y=-2. Укажите какое-либо решение (пару чисел (x;y)) этого уравнения.
  2. Выразите переменную y через x , если 3x-0.5y=1.
  3. Решите систему уравнений
  4. Является ли пара чисел (-2; -1) решением системы уравнений
  5. Четыре медвежонка тяжелее медведицы на 30 кг, а два таких медвежонка легче медведицы на 80 кг. Найдите массу медведицы.

III. Объяснение нового материала.

Составим систему уравнений для задачи с медвежатами. Пусть масса медведицы х кг, а одного медвежонка у кг.

Решим данную систему способом подстановки, при этом ответим на вопросы:

Метод подстановки

  1. Правильно ли выразили одно неизвестное через другое в одном из уравнений?
  2. Правильно ли вы подставили полученное выражение в другое уравнение?
  3. Правильно ли вы решили уравнение с одной неизвестной?
  4. Правильно ли вы подставили найденное значение для вычисления значения другой неизвестной?

В результате получаем: х=190, у=55.

А теперь подумаем, как решить эту систему методом сложения?

Умножить одно из уравнений системы или каждое из них на какое-либо число, чтобы коэффициенты при одной из переменных стали противоположными.

у=55, а х=80+2*55 , х=190.

Какие можно поставить вопросы к методу сложения?

Метод сложения

  1. Каковы коэффициенты при х и y?
  2. При какой неизвестной вы делали коэффициенты противоположными?
  3. Для какого уравнения требуется дополнительный множитель, и какой именно?
  4. Все ли члены выбранного уравнения вы умножили на этот множитель?
  5. Правильно ли вы выполнили сложение левых и правых частей уравнений в полученной системе?
  6. Правильно ли вы решили уравнение с одной неизвестной?
  7. В какое уравнение вы подставили полученное значение неизвестной?
  8. Правильно ли вычислено значение другой неизвестной?

Подумайте, а можно ли решить данную систему графически?

Если да, то дома оформить решение графически.

IV. Закрепление изученного материала.

Решите систему уравнений методом сложения.

а)3

Закончите решение системы:

б)

Работа с учебником. Глава VI,§ 16 п 43 стр 203, алгоритм стр205- прочитать.

Выполнить у доски (парами) № 1147 (а;б)

а)Ответ:(2;1)

б) Ответ: (-8;-4).

Самостоятельная работа по учебнику: № 1147 (в;г)

в)

г)

Ответ: в) (60;30), г) (2; -1/4).

V. Домашняя работа:

выполнить графически систему уравнений, если сможете, рассмотреть примеры 1-3 учебника, решить №1148 (а), повторить №1162.

VI. Познакомимся с контрольным листом и домашней недельной проверочной работой.

Лист контроля

  1. Какое уравнение называется линейным уравнением с двумя неизвестными?
  2. Что значит решить линейное уравнение с двумя неизвестными?
  3. Что называется решением линейного уравнения с двумя неизвестными? Как записывается это решение?
  4. Что является графиком линейного уравнения с двумя неизвестными?
  5. Что называется системой двух линейных уравнений с двумя неизвестными?
  6. Что называется решение системы двух линейных уравнений с двумя неизвестными?
  7. Что значит решить систему двух линейных уравнений с двумя неизвестными?
  8. Какими методами можно решить систему двух линейных уравнений с двумя неизвестными? Каков алгоритм решения каждым методом?
  9. Как решается одно линейное уравнение с двумя неизвестными?
  10. Сколько решений имеет линейное уравнение с двумя неизвестными?

Как записывается общее решение линейного уравнения с двумя неизвестными?

Уроки №8-9 Системы уравнений. Решение систем линейных уравнений. Способ сложения 7 класс

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 300 дидактических материалов для школьного и домашнего обучения

УрокИ №8-9 Системы уравнений. Решение систем линейных уравнений. Способ сложения.

Цель уроков: Ввести понятие функции, функциональной зависимости и как частный случай, линейная функция. Подведение под понятие системы с помощью построения пересекающихся прямых.

I этап. Вопросы по домашнему заданию и подведение итогов СР( урок №7). (15 мин)

Основные ошибки и непонимание:

Не смогли построить график функции :

Не ответили на вопрос задания №1:

При подстановке в №2 не поставили скобки или неверно раскрыли скобки, не учтя минус перед скобками :

Не поняли задание №3.

I I этап. Введение алгоритма Решения систем линейных уравнений. Способ сложения.

Решим систему уравнений:

В обоих уравнениях есть , но в одном , а в другом .

1. Сложим почленно уравнения (левая часть одного + левая часть другого и правые части отдельно.

Второе уравнение допишем неизменно.

2. При сложении одно уравнение получилось с одной переменной, значит можем найти его корень.

Найденное неизвестное из первого уравнения, подставляем в другое уравнение.

Находим второе неизвестное

Иногда, чтобы применить этот способ, необходимо сделать преобразование уравнений. Рассмотрим пример№2

Данная система «НЕ ГОТОВА» к применению способа сложения.

Но мы можем домножить обе части уравнения на одно и то же число, чтобы в обоих уравнениях получилось одно неизвестное с противоположными коэффициентами!

1. УМНОЖИМ ОБЕ ЧАСТИ ПЕРВОГО УРАВНЕНИЯ НА (-3), чтобы получить противоположные числа при x

2. ДАЛЕЕ ПО АЛГОРИТМУ

ПРИМЕЧАНИЕ! Для подставки неизвестного можно выбирать любое из данных уравнений.

ОТВЕТ получился тот же самый

I II этап. Решение систем линейных уравнений. Способ сложения.

I V этап. Разминка в начале следующего урока (устно).

ДАЛЕЕ … ПРОДОЛЖАЕМ РЕШАТЬ СИСТЕМЫ СПОСОБОМ СЛОЖЕНИЯ.

Домашнее задание (записать в тетрадь).

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА

Лебединцева Е.А., Беленкова Е.Ю. Алгебра 8 класс. Задания для обучения и развития учащихся. Учебное пособие. — М.: Интеллект-Центр, 2013. – 176 с.

Изучение алгебры в 7-9 классах: Кн. Для учителя / Ю.М. Колягин, Ю.В. Сидоров, М.В. Ткачева и др. – М. : Просвещение, 2002. – 287 с.: — ISBN 5-09-010414- X .

Алгебра. Дидактические материалы. 8 класс / М.В. Ткачева, Н.Е. Федорова, М.И. Шабунин. – 2-е изд., дораб. – М.: Просвещение, 2013. – 96 с. : ил. – ISBN 978-5-09-028132-4

Мерзляк А.Г. Алгебра: 9 класс: учебник для учащихся общеобразовательных организация/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2014. – 304 c .: ил. ISBN 978-5-360-05308-8

Колягин Ю.М., Ткачева М.В., Федорова Н.Е., Шабунин М.И. АЛГЕБРА. Рабочая тетрадь. 8 класс. Пособие для учащихся общеобразовательных организаций в двух частях. Издательство «Просвещение», 2013 ISBN 978-5-09-032404-5(общ.) ISBN 978-5-09-032403-8(1)

Лебединцева Е.А., Беленкова Е.Ю. Алгебра 7 класс. Задания для обучения и развития учащихся. Учебное пособие.

Серебряная Т.В. УрокИ №8-9 Системы уравнений. Решение систем линейных уравнений. Способ сложения . 7 класс.

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 693 человека из 75 регионов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 864 человека из 78 регионов

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • Сейчас обучается 48 человек из 23 регионов

«Профессиональный имидж педагога: стереотипы и методы их преодоления»

Свидетельство и скидка на обучение каждому участнику

«Мотивация здорового образа жизни. Организация секций»

Свидетельство и скидка на обучение каждому участнику

  • Для всех учеников 1-11 классов
    и дошкольников
  • Интересные задания
    по 16 предметам

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 839 051 материал в базе

Ищем педагогов в команду «Инфоурок»

Другие материалы

  • 30.01.2017
  • 1836
  • 3
  • 30.01.2017
  • 1165
  • 2
  • 30.01.2017
  • 3291
  • 7
  • 30.01.2017
  • 396
  • 0
  • 30.01.2017
  • 4716
  • 11
  • 30.01.2017
  • 461
  • 1
  • 30.01.2017
  • 1302
  • 6

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 30.01.2017 6319
  • DOCX 404.7 кбайт
  • 59 скачиваний
  • Рейтинг: 4 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Серебряная Татьяна Викторовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 5 лет и 3 месяца
  • Подписчики: 0
  • Всего просмотров: 24268
  • Всего материалов: 15

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

С 1 сентября в российских школах будут исполнять гимн России

Время чтения: 1 минута

Госдума рассматривает проект о регулировании «продленок» в школах

Время чтения: 1 минута

Минпросвещения проведет Всероссийский конкурс для органов опеки и попечительства

Время чтения: 1 минута

Российские школьники начнут изучать историю с первого класса

Время чтения: 1 минута

Около 20% детей до 15 лет не воспринимают прочитанную информацию

Время чтения: 1 минута

Минпросвещения рекомендует школьникам сдавать телефоны перед входом в школу

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Решение системы линейных уравнений методом сложения

Алгоритм решения системы линейных уравнений методом сложения

  1. Умножить обе части одного или обоих уравнений так, чтобы коэффициенты при одной из переменных стали противоположными (или равными) числами.
  2. Сложить (или отнять) уравнения, чтобы избавиться от одной из переменных.
  3. Решить второе уравнение относительно выраженной переменной.
  4. Решить полученное уравнение с одной переменной.
  5. Найти вторую переменную.
  6. Записать ответ в виде упорядоченной пары найденных значений переменных.

Умножаем первое уравнение на 2

Отнимаем от первого уравнения второе:

Находим y из первого уравнения:

В последовательной записи:

$$ <\left\< \begin 3x+y = 5 | \times 2 \\ x+2y = 5 \end \right.> \Rightarrow (-) <\left\< \begin 6x+2y = 10 \\ x+2y = 5 \end \right.> \Rightarrow <\left\< \begin 5x = 5 \\ x+2y = 5 \end \right.> \Rightarrow <\left\< \begin x = 1 \\ y = 5-3x = 2 \end \right.> $$

Примеры

Пример 1. Решите систему уравнений методом сложения:

$ а) <\left\< \begin 5x-4y = 3 | \times 2 \\ 2x-3y = 4 | \times 5 \end \right.> \Rightarrow <\left\< \begin 10x-8y = 6 \\ 10x-15y = 20 \end \right.> \Rightarrow <\left\< \begin 7y = -14 \\ 2x-3y = 4 \end \right.> \Rightarrow <\left\< \begin x = \frac<3y+4> <2>= -1 \\ y=-2 \end \right.> $

$ б) <\left\< \begin 4x-3y = 7 | \times 3 \\ 3x-4y = 0 | \times 4 \end \right.> \Rightarrow (-) <\left\< \begin 12x-9y = 21 \\ 12x-16y = 0 \end \right.> \Rightarrow <\left\< \begin 7y = 21 \\ x = \frac<4> <3>y \end \right.> \Rightarrow <\left\< \begin x = 4 \\ y = 3 \end \right.> $

$ в) <\left\< \begin 5a-4b = 9 | \times 2 \\ 2a+3b = -1 | \times 5 \end \right.> \Rightarrow (-) <\left\< \begin 10a-8b = 18 \\ 10a+15b = -5 \end \right.> \Rightarrow <\left\< \begin -23b = 23 \\ a = \frac<-3b-1> <2>\end \right.> \Rightarrow <\left\< \begin a = 1 \\ b = -1 \end \right.> $

$ г) <\left\< \begin 7a+4b = 5 \\ 3a+2b = 1 | \times (-2) \end \right.> \Rightarrow (+) <\left\< \begin 7a+4b = 5 \\ -6a-4b = -2 \end \right.> \Rightarrow <\left\< \begin a = 3 \\ b = \frac<1-3a> <2>\end \right.> \Rightarrow <\left\< \begin a = 3 \\ b = -4 \end \right.>$

Пример 2. Найдите решение системы уравнений:

$$а) <\left\< \begin \frac<4>-y = 7 \\ 3x+ \frac <2>= 9 | \times 2\end \right.> \Rightarrow (+) <\left\< \begin \frac <4>-y = 7 \\ 6x+y = 18 \end \right.> \Rightarrow <\left\< \begin 6 \frac<1> <4>x = 25 \\ y = 18-6x\end \right.> \Rightarrow $$

$$\Rightarrow <\left\< \begin x = 25: \frac<25> <4>= 25 \cdot \frac<4> <25>= 4 \\ y = 18-6 \cdot 4 = -6 \end \right.> $$

$ в) <\left\< \begin 3(5x-y)+14 = 5(x+y) \\ 2(x-y)+9 = 3(x+2y)-16 \end \right.> \Rightarrow <\left\< \begin 15x-3y+14 = 5x+5y \\ 2x-2y+9 = 3x+6y-16 \end \right.> \Rightarrow $

$ г) <\left\< \begin 5-3(2x+7y) = x+y-52 \\ 4+3(7x+2y) = 23x \end \right.> \Rightarrow <\left\< \begin 5-6x-21y = x+y-52 \\ 4+21x+6y = 23x \end \right.> \Rightarrow <\left\< \begin 7x+22y = 57 \\ 2x-6y = 4 |:2 \end \right.>$

$$ \Rightarrow <\left\< \begin 7x+22y = 57 \\ x-3y = 2 | \times 7 \end \right.> \Rightarrow (-) <\left\< \begin 7x+22y = 57 \\ 7x-21y = 14 \end \right.> \Rightarrow <\left\< \begin 43y = 43 \\ x = 3y+2 \end \right.> \Rightarrow <\left\< \begin x = 5 \\ y = 1 \end \right.>$$

Пример 3*. Найдите решение системы уравнений:

Введём новые переменные: $ <\left\< \begin a = \frac<1> \\ b = \frac<1> \end \right.> $

Перепишем систему и найдём решение для новых переменных:

$$ <\left\< \begin2a+3b = 1| \times 3 \\ 3a-5b = 11 | \times 2 \end \right.> \Rightarrow (-) <\left\< \begin 6a+9b = 3 \\ 6a-10b = 22 \end \right.> \Rightarrow <\left\< \begin 19b = -19 \\ a = \frac<1-3b> <2>\end \right.> \Rightarrow <\left\< \begin a = 2 \\ b = -1 \end \right.> $$


источники:

http://infourok.ru/uroki-sistemi-uravneniy-reshenie-sistem-lineynih-uravneniy-sposob-slozheniya-klass-1568135.html

http://reshator.com/sprav/algebra/7-klass/reshenie-sistemy-linejnyh-uravnenij-metodom-slozheniya/