7 класс алгебра решение задач с помощью линейных уравнений

Решение задач с помощью Линейных уравнений
план-конспект урока по алгебре (7 класс) на тему

Решение задач с составлением линейных уравнений

Скачать:

ВложениеРазмер
lineynye_zadachi.docx25.99 КБ

Предварительный просмотр:

Цели урока:
1. Образовательные:
— закрепить умения и навыки решать линейные уравнения и задачи с помощью составления уравнений;
— формировать умения самостоятельно решать задачи.
2. Развивающие:
— посредством решения заданий развивать логическое мышление, культуру устного счета и речь учащихся;
— дать возможность каждому ребенку определить для себя уровень сложности в выполнении заданий, тем самым развивать самостоятельность, умение критически относиться к своей работе.
3. Воспитательные:
— используя игру как здоровьесберегающую технологию, содействовать воспитанию интереса к математике, активности.
Записи на доске:
— название банка;
— тема урока;
— высказывание Конфуция;
— задания для устного счета;
— задания для практической части.

План и ход урока.

1. Организационный момент.
2. Проверка знаний теоретического материала по теме: «Уравнения с одной переменной».
3. Устная работа.
4. Решение заданий разного уровня.
5. Дифференцированная самостоятельная работа.
6. Подведение итогов.
7. Индивидуальное домашнее задание.
Сегодня мы с вами проведем необыкновенный урок: Урок- игру «Банк знаний».
Тема нашего урока: «Решение задач с помощью уравнений».
На уроке мы повторим определения, свойства линейного уравнения с одной переменной, закрепим навыки и умения решения линейных уравнений с одной переменной, решения задач с помощью составления уравнений.

Китайский мудрец Конфуций, живший, 500 лет до нашей эры сказал:
«Те, кто обладают врожденными знаниями — богаче всех. За ними следуют те, кто приобретают знания благодаря учению» .

Так давайте же будем приобретать знания, и в конце урока мы выясним, сможем ли мы себя назвать богатыми.
В городе Когалым есть сберегательный банк, банк «Петрокоммерц», Ханты-Мансийский банк и сегодня открывается еще один банк: «Банк знаний». Туда я и предлагаю вам вложить сегодня деньги, заработанные во время урока, за свои знания. Для того, чтобы сделать первый вклад вы должны ответить на мои вопросы и получить за это первоначальный капитал. За каждый правильный ответ вы получаете одну медную монету достоинством в « 1 тугрик». 1.Устный счёт.

2.В одном бидоне x л, а в другом y л молока.

2. 2. Что означает равенство?

3. Составьте выражение для решения задачи

  • Купили 2 блокнота по x руб. и тетрадь по 18 руб. Какова стоимость покупки?
  • Вася решил несколько примеров, а Петя в 2 раза больше. Сколько примеров решил Петя? Сколько примеров решили они вместе?
  • Антон прочитал несколько страниц книги, осталось ему прочитать на 32 страницы больше, чем уже прочитано. Сколько страниц в книге?
  • Персик тяжелее абрикоса в 3 раза. На сколько абрикос легче персика?

3x — x _ что их связывает?

_ сформулируйте тему урока.

1. Дайте определение корня уравнения.

2. Является ли число 7 корнем уравнения 2х — 5 = х + 2 ?

3. Что значит решить уравнение?

4. Какие уравнения называются равносильными?

5. Сформулируйте свойства уравнений.

6. Приведите пример уравнения, равносильного уравнению 5х — 4 = 6 .

7. Дайте определение линейного уравнения с одной переменной.

8. Приведите примеры.

9. В каком случае уравнение ах = в имеет:
— единственный корень,
— множество корней,
— не имеет решения ?
Итак, вы имеете определенный капитал.
Продолжим пополнять свой капитал. Вам предстоит выполнить задания. За каждое верное решение вы получаете одну медную монету достоинством один тугрик, которую вы можете поместить в разные вклады:
I. Вклад «Легкий»
Решите уравнение:
а) 2х = 0 г) 6х = 3
б) 3х = 1 д) 3х + 9 = 0
в) х — 2 = 0 е) 7х — 4 = х — 16
II. Вклад «Занимательный»
На доске было написано решение линейного уравнения, но правую часть данного уравнения стерли. Восстановите ее:
а) 3х = …. б) 5х = …. в) 0,2х =….
х = -11 х = 0 х = 14
III. Вклад «Поисковый»
Какое из чисел 3 или -2, является корнем уравнения
а) 3х = — 6 в) 4х — 4 = х + 5
б) х + 3 = 6 г) 5х — 8 = 2х + 4

IV. Вклад «Универсальный»
При каких значениях а уравнение
ах = 8
а) имеет корень, равный -4; 0,5;
б) не имеет корней;
в) имеет отрицательный корень.
5.Решение задач. Вы получили информацию об основных вкладах нашего банка. А теперь каждому из вас предстоит выполнить задания, за решение которых вы будете также получать тугрики.
В банке работают кассиры, которые будут за правильные решения выдавать монеты:
а — медная монета достоинством в 1 тугрик
в — серебряная монета достоинством в 2 тугрика
с — золотая монета достоинством в 3 тугрика
После выполнения всех заданий у каждого из вас образуется накопительный фонд.
Итак, приступайте, перед вами на столах лежат задания для различных вкладов. Самостоятельно выбирайте вклад, решайте, сдавайте кассиру банка и получайте тугрики.
а Папе и дедушке вместе 111 лет. Сколько лет каждому, если папа в два раза моложе дедушки?
в За 3 часа мотоциклист проезжает то же расстояние, что велосипедист за 5 часов. Скорость мотоциклиста на 12 км/ч больше скорости велосипедиста. Определите скорость каждого.
с В двух сараях сложено сено, причем в первом сарае сена в 3 раза больше, чем во втором. После того, как из первого сарая увезли 20 т., а во второй привезли 10 т. В обоих сараях сена стало поровну. Сколько сена было во втором сарае первоначально.

Купили 2 кг 100 г крупы и высыпали ее в три банки. В первую банку крупы вошло в 3 раза больше, чем во вторую, а в третью банку насыпали 500 г крупы. Сколько крупы насыпали в первую и сколько во вторую банки?

Пусть во вторую банку насыпали x г крупы, тогда в первую – 3x г крупы. Всего в три банки насыпали (3x + x + 500) г, что по условию составляет 2100 г. Составим и решим уравнение.

3x + x + 500= 2100;

400 г – насыпали во вторую банку.

400 ⋅ 3 = 1200 (г) – в первой банке.

Задача для слабых. с В первом мешке в 3раза больше картофеля, чем во втором. После того, как из одного мешка взяли 30 кг. картофеля, а во второй насыпали ещё 10 кг., в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.
Задача для сильных. Подготовка к ГИА. Решение задач из сборника заданий ГИА-2010.В.В. Кочагина, М.Н. Кочагиной .Алгебра. Москва. Эксмо, 2009.

1 . Велосипедист собирался преодолеть расстояние от поселка до станции за 5 часов. Выехав из поселка, он увеличил свою скорость на 3 км/ч и проехал расстояние до станции за 4 часа. Чему равно расстояние от поселка до станции?

Ну вот и наступило время подвести итог, сейчас каждый из вас подсчитает сколько тугриков сможет внести в «Банк Знаний»

1. Считаем медные монеты достоинством в 1 тугрик, вы получаете столько тугриков, сколько у вас монет.

2. Считаем серебряные монеты достоинством в 2 тугрика. Умножьте количество серебряных монет на два и получите количество тугриков.

3. Считаем золотые монеты достоинством в три тугрика. Умножьте количество монет на три, получите количество заработанных тугриков.

4. Сложите все полученные тугрики.
Вы получили «5», если набрали 15 тугриков и более, «4», если набрали 10-14 тугриков, «3», если набрали 5-9 тугриков.
Поставьте оценку в дневник, запишите число набранных тугриков на квитанции банка, вложите квитанцию и тугрики (монеты) в пакет и сдайте кассирам банка.
Увеличить свой капитал вы можете дома, выполнив индивидуальные задания, которые лежат у каждого на столе. Выбирайте любой вклад и продолжайте зарабатывать тугрики в «Банке Знаний»
Положите задания в дневник.
Задание на дом:
Вклад «Поисковый»
Решить уравнение:
а 1/5х = 5
3х — 11,4 = 0
4х + 5,5 = 2х — 2,5
в 2х — (6х+1) = 9
5х — 12,5 = 0
3х — 0,6 = х + 4,4
с 4х — (7х — 2) = 17
8х — (2х + 4) = 2(3х — 2)
3х — (9х — 3) = 3 (4 — 2х)
Вклад «Творческий»
а В двух седьмых классах 47 учеников, причем в одном на 3 ученика больше, чем в другом. Сколько учеников в каждом классе?
в Саша решил две задачи за 35 минут. Первую задачу он решал на 7 минут дольше, чем вторую. Сколько минут Саша решал вторую задачу?
с В первом мешке в 3раза больше картофеля, чем во втором. После того, как из одного мешка взяли 30 кг. картофеля, а во второй насыпали ещё 10 кг., в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.
Квитанция «Банка Знаний» к домашнему заданию.
Решить уравнение:
а одно задание 1 тугрик
в одно задание 2 тугрика
с одно задание 3 тугрика
Решить задачу:
а 1 тугрик
в 2 тугрика
с 3 тугрика,
чтобы получить
«5» нужно набрать 12 тугриков
«4» нужно набрать 8-11 тугриков
«3» нужно набрать 4-7 тугриков
Кто же сегодня у нас самые богатые? Те, кто заработал 15 тугриков и более, могут позволить себе делать большие капиталловложения: строить заводы, фабрики, нефтяные вышки. Те, кто заработал 10-14 тугриков, смогут отправиться в путешествие. Ну, а те, кто заработал 5-9 тугриков, вы можете посетить фитобар нашей школьной столовой и купить коктейль. Итак, сегодня банк закрывается. До свидания! До новых встреч в «Банке Знаний».

Алгебра. 7 класс

Конспект урока

Решение задач с помощью линейных уравнений

Перечень рассматриваемых вопросов:

• Решение линейных уравнений.

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

Корень уравнения – это число, при подстановке которого в уравнение получается верное равенство.

Решить уравнение – значит найти все его корни или установить, что их нет.

Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Математическая модель – математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.

Выражение – это совокупность чисел и букв, соединенных между собой различными знаками.

Переменная – символ, используемый для представления величины, которая может принимать любое из ряда значений.

Свободный член – член уравнения, не содержащий неизвестного.

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

Решить уравнение – значит найти все его корни или установить, что их нет.

Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Математическая модель – математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.

Выражение – это совокупность чисел и букв, соединенных между собой различными знаками.

Линейное уравнение – уравнение вида ax = b, где x – переменная, a, b – некоторые числа.

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Мы уже рассматривали примеры функциональных зависимостей между величинами как математические модели реальных процессов. Теперь рассмотрим текстовые задачи, математическими моделями которых являются линейные уравнения и уравнения, сводящиеся к линейным.

Решить задачу можно с помощью системы уравнений, а можно с помощью одного уравнения. Рассмотрим на примере задачи.

Из города А в город В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 15 км/ч, а вторую половину пути – со скоростью 90 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 54 км/ч. Ответ дайте в км/ч.

При решения текстовых задач эффективно построение схем и составление таблиц.

Используя сравнение скоростей, указанное в задаче, и обозначая скорость первого автомобиля икс, запишем скорость второго автомобиля на протяжении всего пути:

Скорость первого автомобиля: x, скорость второго автомобиля: x – 15x – 15/

Теперь заполним вспомогательную таблицу.

Условие, что автомобили прибыли в пункт назначения одновременно, используем для составления уравнения. Выражаем время первого автомобиля, которое он затратил на весь путь, через x.

Время первого автомобиля:

Время второго автомобиля:

Сократим на S ≠ 0 и умножим на 2.

Умножим обе части на 90x(x – 15), получим:

Решением уравнения будут корни:

Условию уравнения удовлетворяет только x = 60

Ответ: 60 км/ч – скорость первого автомобиля.

Составим алгоритм решения текстовых задач при помощи уравнений.

Решать задачу с помощью уравнения следует в такой последовательности:

1) обозначить переменной одну из неизвестных величин;

2) другие неизвестные величины (если они есть) выразить через введенную переменную;

3) по условию задачи установить соотношение между неизвестными и известными значениями величин и составить уравнение;

4) решить полученное уравнение;

5) проанализировать решение уравнения и найти неизвестную величину, а при необходимости и значения остальных неизвестных величин;

6) записать ответ к задаче.

Решите задачу двумя способами.

В первый день со склада было отпущено 20% имевшихся груш. Во второй день 180% от того количества груш, которое было отпущено в первый день. В третий день ‑ оставшиеся 88 кг. Сколько кг груш было на складе первоначально?

Разберем 2 способа решения этой задачи.

Для первого способа составим вспомогательную таблицу:

Значит, первоначально было 200 кг груш.

Составим вспомогательную аблицу:

Ответ: 200 кг груш.

Разбор заданий тренировочного модуля.

Задание 1. Запишите выражение для нахождения цены 1 кг сахара (в руб.), если n тонн сахара стоят m рублей.

Для решения задачи, вспомним, сколько килограммов содержится в одной тонне:

Так как стоимость n тонн сахара = m рублей, то, чтобы найти, сколько стоит 1 кг сахара, нужно стоимость разделить на количество:

Цена персиков на 30 р. выше, чем цена абрикосов. Для консервирования компота купили 5 кг персиков и 7 кг абрикосов. По какой цене покупали фрукты, если вся покупка обошлась 850 рублей?

Пусть цена абрикосов – x рублей. Тогда x + 20x + 20 – цена персиков.

Всего купили персиков: 5(x + 30) и абрикосов 7x.

Так как на всю покупку затратили 850 руб., имеем выражение:

5(x + 30) + 7x = 850

Раскроем скобки: 5x + 150 + 7x = 850

Перенесем слагаемые, не содержащие переменной, в правую часть, меняя знак на противоположный:

Конспект и презентация к у року алгебры в 7 классе «Решение задач с помощью линейных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 300 дидактических материалов для школьного и домашнего обучения

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Конспект урока.docx

Муниципальное бюджетное общеобразовательное учреждение «Акбулакская средняя общеобразовательная школа № 2 Акбулакского района Оренбургской области»

Конспект урока по алгебре в 7 классе

«Решение задач с помощью линейных уравнений»

Гришанова Елена Сергеевна

Обобщение и систематизация знаний по теме: «Решение задач с помощью линейных уравнений».

Цель: закрепить и обобщить знания учащихся о решении задач с помощью линейных уравнений с одной переменной.
Задачи:

образовательные: повторение, обобщение и систематизация знаний по теме, формирование навыков решения задач по алгоритму, создание условий контроля (самоконтроля) за усвоением знаний и умений;

развивать умение анализировать, сравнивать, обобщать, делать выводы; развивать логическое мышление, творческие способности, смекалку и сообразительность через познавательную деятельность учащихся; развивать умений самостоятельно добывать и применять знания для решения математических задач;

формировать умение слушать и вступать в диалог, учитывая позицию оппонентов и участвовать в коллективном обсуждении возникающих проблем; повышать мотивацию к обучению через нетрадиционное проведение уроков; воспитывать личностные качества, необходимые для самообразования.

Методы обучения: наглядно-иллюстративный, репродуктивный, беседа, самостоятельная работа.

Формы работы на уроке: классно-урочная, индивидуальная, фронтальная.

Тип урока: комбинированный.

Технические средства обучения: компьютер, проектор.

Дополнительное оборудование и средства обучения: презентации MS Power Point; распечатанные текстовые материалы для работы на уроке.

I . Организационный этап.

Приветствие. Настроить учащихся на работу. Организация внимания.

Включаются в деловой ритм урока.

II . Постановка цели и задач урока.

Французский писатель 19 столетия Анатоль Франс однажды заметил: “Учиться можно только весело. Чтобы переваривать знания, надо поглощать их с аппетитом”. Так вот, давайте сегодня на уроке будем следовать этому совету писателя, будем активны, будем поглощать знания с большим желанием, ведь они пригодятся вам в дальнейшей жизни.

Через математические знания, полученные в школе, лежит широкая дорога к огромным областям труда и открытий. У нас сегодня с вами своя дорога длиною 40 минут.

Чем мы занимались на прошлых уроках? Чем будем заниматься сегодня на уроке?

Сегодня на уроке перед вами стоит задача – показать, как вы умеете решать линейные уравнения с одной переменной, как решаете задачи с помощью уравнений. Я хочу пожелать всем удачи на пути хорошего и бодрого настроения, правильных ответов.

Любая дорога удачна только в том случае, если вы получаете от неё положительные эмоции. Какой же путь получиться у нас? Поэтому я предлагаю отмечать вам свое настроение на всех этапах нашего урока. Оценивать себя вы будете в зависимости от настроения. Итак, оцените свое настроение в начале урока.


источники:

http://resh.edu.ru/subject/lesson/7274/conspect/

http://infourok.ru/konspekt-i-prezentaciya-k-u-roku-algebry-v-7-klasse-reshenie-zadach-s-pomoshyu-linejnyh-uravnenij-4049870.html