8 класс алгебра урок на тему формулы корней квадратного уравнения

Урок алгебры в 8 классе «Формула корней квадратного уравнения»
план-конспект урока по алгебре (8 класс) по теме

Урок изучения нового материала.

Скачать:

ВложениеРазмер
urok_algebry_v_8_kl_formula_korney_kvadratnogo_uravneniya.docx31.43 КБ

Предварительный просмотр:

Тема урока: Формулы корней квадратного уравнения.

Цели урока: показать способ решения полных квадратных уравнений с использованием формулы корней квадратного уравнения; познакомить с правилами оформления решения квадратного уравнения; формировать умение решать квадратные уравнения при различных значениях дискриминанта.

  1. Организационный момент. Сообщение темы и целей урока.
  2. Актуализация знаний учащихся.
  1. Ответы на вопросы по домашнему заданию (разбор нерешённых задач).
  2. Контроль усвоения изученного материала.

а) Напишите общий вид квадратного уравнения.

б) Какое квадратное уравнение называется неполным? Приведите примеры.

в) Какое квадратное уравнение называется приведённым? Приведите примеры.

г) Каким способом решают квадратные уравнения?

3. Самостоятельная работа.

Способом выделения квадрата двучлена решите уравнения:

  1. х 2 + 10х + 25 = 0

1) х 2 + 12х + 36 = 0

  1. х 2 – 4х – 12 = 0

2) х 2 + 6х + 5 = 0

  1. х 2 – 6х + 7 = 0

3) х 2 + 4х – 1 = 0

  1. 3х 2 + 2х – 1 = 0

4) 3 х 2 — 5х — 8 = 0

  1. Изучение нового материала.
  1. Любое квадратное уравнение можно решить по формуле. (Вывод формулы.)

D= – дискриминант квадратного уравнения.

Количество корней зависит от D.

Итак, при решении квадратного уравнения поступают следующим образом:

  1. Вычисляют дискриминант квадратного уравнения.
  2. Сравнивают дискриминант с нулём.
  3. Если D ≥ 0, то используют формулу корней, если D

2. Рассмотрим примеры.

а) Решим уравнение: 4х 2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b 2 — 4ac = 7 2 — 4 • 4 • 3 = 49 — 48 = 1,

D > 0, два разных корня; х 1 = -1, х 2 = -0,75.

б) Решим уравнение: 4х 2 — 4х + 1 = 0,

а = 4, b = — 4, с = 1, D = b 2 — 4ac = (-4) 2 — 4 • 4 • 1= 16 — 16 = 0,

D = 0, один корень; х = 0,5.

в) Решим уравнение: 2х 2 + 3х + 4 = 0,

а = 2, b = 3, с = 4, D = b 2 — 4ac = 3 2 — 4 • 2 • 4 = 9 — 32 = — 13 ,

D данное уравнение корней не имеет.

3. Рассмотрим случай , когда коэффициент b является чётным числом.

Если в уравнении b = 2 k ,то уравнение имеет вид

Решим уравнение: 4х 2 — 12х + 9 = 0.

а = 4, b = — 12, с = 9, D = k 2 — ac = (-6) 2 — 4 • 9= 36 — 36 = 0,

D = 0, один корень; х =1,5.

  1. Закрепление нового материала.
  1. Решение уравнений. (Двое учащихся работают у доски, остальные – в тетрадях, затем сверяют решение.)

x 2 − 8 x + 12 = 0;

5 x 2 + 3 x + 7 = 0;

3x 2 − 5 x − 2 = 0.

  1. Работа по учебнику ( фронтально): № 533 (а, в) – устно, 534 (а, б), 539 (а, в).
  1. Подведение итогов урока.

– Какие уравнения мы сегодня решали?
– Сколько корней может иметь квадратное уравнение?
– С помощью чего мы их решали?

– Назовите формулу корней квадратного уравнения при D > 0.

– Сколько корней имеет квадратное уравнение при D = 0?

п. 22, № 534 (в), 536 (а, в), 539 ( б, г).

По теме: методические разработки, презентации и конспекты

конспект урока по теме «Формулы корней квадратных уравнений»

Урок закрепления с применением информационных технологий и системно деятельностного подхода.

урок на тему «Формула корней квадратного уравнения»

Тема: «Решение квадратных уравнений по формуле» Цель: Вывод формулы решения квадратных уравнений, научиться применять данную формулу в процессе решения уравнений Структура: 1 Организационны.

Урок по теме»Формула корней квадратного уравнения» с применением ИКТ

Разработка урока по теме «Формула корней квадратного уравнения» с презентацией.

Урок «Ещё одна формула корней квадратного уравнения»

Разработка урока по алгебре 8 класс.

Конспект урока по теме «Формулы корней квадратных уравнений».

Конспект урока по теме «Формулы корней квадратных уравнений». Урок закрепления знаний. Проведение индивидуальной работы. Представлена разноуровневая самостоятельная работа для учащихся со слабыми знан.

Урок по теме «Формулы корней квадратного уравнения» 8класс

Технологическая карта открытого урока в 8 классе по теме «Формулы корней квадратного уравнения». По тематическому планированию по алгебре урок №58. В главе «Квадратные уравнения&q.

Урок алгебры «Формулы корней квадратного уравнения». 8-й класс

Класс: 8

Презентация к уроку

Продолжительность: 45 минут.

Предмет, класс, в котором используется продукт: Алгебра, 8 класс.

Авторы учебника, учебно-методического комплекта: Алгебра 7 класс. В 2 ч.

Ч.1 Учебник для учащихся общеобразовательных учреждений А.Г.Мордкович, — М.: Мнемозина, 2013

Ч.2 Задачник для учащихся общеобразовательных учреждений А.Г.Мордкович, Л.А.Александрова, Т.Н. Мишустина, Е.Е.Тульчинская, -М.: Мнемозина, 2013.

Тип урока: урок изучения нового материала.

Формы организации урока: фронтальная, индивидуальная.

Методы обучения: словесный, наглядный, проблемный, практический.

Оборудование: интерактивная доска, компьютер, карточки с заданиями.

Пояснительная записка: при подготовке урока в 8 классе учитываются возрастные особенности учащихся и государственный стандарт по математике.

Цели урока:

  • отработка способов решения неполных квадратных уравнений;
  • формировать навыки решения квадратных уравнений по формуле;
  • развивать логического мышления, память, внимание;
  • развивать общеучебные умения, умения сравнивать и обобщать;
  • формировать умение анализировать, обобщать, развивать математическое мышление.

Ход урока

1. Организационный момент

Уважаемые учащиеся сегодня нам предстоит научиться решать еще один вид уравнений. Но перед этим давайте с вами вспомним, чем мы занимались на прошлых занятиях.

2. Актуализация знаний

Давайте посмотрим на доску и вспомним какие уравнения мы с вами прошли, выполнив задание на доске.

Учащимся предлагается выполнить задание на соотнесение. Соотнести название уравнения с примерами, записанными на доске и объясните свой выбор (Слайд №2, 3).

После выполнения задания учащиеся под руководством учителя составляют схему. (Слайд №4)

3. Мотивация учебной деятельности.

Решим уравнение вида несколькими способами.

1 способ: Разложение квадратного трехчлена методом группировки.

2 способ: Разложим квадратный трехчлен на множители методом выделения полного квадрата

3 способ:Графический. Приведем уравнение к виду . Построим два графика функций и найдем их точки пересечения.

  • Давайте подумаем, в чем минусы этих методов:
  • не все квадратные трехчлены можно разложить на множители;
  • не все графики будут пересекаться в “хороших точках” (Слайд №5-9).

Примечание: В презентации работают гиперссылки, нажав на которые можно перейти к нужному методу решения и обратно к классификации.

Ознакомление с новым материалом. Первичное осмысление и закрепление изученного.

Давайте познакомимся с алгоритмом решения квадратного уравнения и формулами, которые будут нашими помощниками.

Алгоритм решения квадратного уравнения (Слайд №10):

  1. Выпишите коэффициенты квадратного уравнения.
  2. Вычислите дискриминант D квадратного уравнения по формуле .
  3. Если D 0, то квадратное уравнение имеет два корня, которые вычисляются по формуле

Если время урока будет хватать, то можно с детьми поделиться исторической справкой про квадратные уравнения и дискриминант. В презентации достаточно перейти по гиперссылки нажав на стрелку (Слайд №11-13).

После объяснения теоретического материала учитель разбирает пример оформления решения квадратного уравнения на доске для случаев, когда D 0. (Слайд №14).

Пример 1. Решить квадратное уравнение

Решение: Выпишем коэффициенты .

. Так как D 0, то данное квадратное уравнение имеет два корня. Вычислим их по формуле:

.

Далее учащимся предлагается решить номера из учебника: №25.5(а,б), 25.7(а,б), 25.10 (а,б).

После отработки материала, при наличии времени можно предложить самостоятельную работу на первичное осмысление и закрепление изученного материала (Слайд №15).

Вариант 1

Вариант 2

5. Постановка домашнего задания.

Учитель диктует домашнее задание, которое параллельно высвечивается на интерактивной доске: п. 25 Выучить алгоритм решения квадратных уравнений, основные формулы; №25.5(в,г), 25.7(в,г), 25.10 (в,г), 25.11 (Слайд №16).

6. Подведение итогов урока.

Учитель совместно с учащимися подводит итоги прошедшего урока.

Сегодня на уроке:

  • вспомнили все виды уравнений;
  • повторили известные нам способы решения полных квадратных уравнений, закрепляя их на примерах;
  • увидели недостатки рассматриваемых нами ранее способов решения квадратных уравнений;
  • познакомились с алгоритмом решения квадратных уравнений.

7. Рефлексия

В конце урока учащимся предлагается продолжить предложения (Слайд №17).

  • На уроке я узнал.
  • На уроке мне понравилось.
  • На уроке я запомнил, что .
  • Теперь я могу.
  • Теперь я попробую.


источники:

http://urok.1sept.ru/articles/663332