8 класс как решать неполные квадратные уравнения 8 класс примеры

Неполные квадратные уравнения

теория по математике 📈 уравнения

Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где х – переменная, a, b, c некоторые числа, причем a≠0. Обычно его называют полным квадратным уравнением.

Если в таком уравнении один из коэффициентов b или c равен нулю, либо оба одновременно равны нулю, то такое уравнение называется неполным квадратным уравнением.

Неполное квадратное уравнение при b=0: ax 2 +c=0

Для решения такого вида уравнения надо выполнить перенос коэффициента с в правую часть, затем найти квадрат переменной (делим обе части на одно и то же число), найти два

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Пример №1. Решить уравнение:

Выполним перенос числа –45 в правую часть, изменяя знак на противоположный: 5х 2 =45; найдем переменную в квадрате, поделив обе части уравнения на 5: х 2 =9. Видим, что квадрат переменной равен положительному числу, поэтому уравнение имеет два корня, находим их устно, извлекая квадратный

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Ответ: х=±3 или можно записать ответ так: х1=–3, х2=3 (обычно меньший корень записывают первым). Пример №2. Решить уравнение:

Выполним решение уже известным способом: –6х 2 =90. х 2 =–15 Здесь видим, что квадрат переменной равен отрицательному числу, а это значит, что уравнение не имеет корней. Ответ: нет корней. Пример №3. Решить уравнение:

Здесь мы видим в левой части уравнения формулу сокращенного умножения (разность квадратов двух выражений). Поэтому, можем разложить данное выражение на множители, и найти корни уравнения: (х–10)(х+10)=0. Соответственно, вспомним, что произведение двух множителей равно нулю тогда, когда хотя бы один из множителей равен нулю, то есть х–10=0 или х+10=0. Откуда имеем два корня х1=10, х2=–10.

Неполное квадратное уравнение при с=0: ax 2 +bx=0

Данного вида уравнение решается способом разложения на множители – вынесением за скобки переменной. Данное уравнение всегда имеет два корня, один из которых равен нулю. Рассмотрим данный способ на примерах.

Пример №4. Решить уравнение:

Выносим переменную х за скобки: х(х+8)=0. Получаем два уравнения х=0 или х+8=0. Отсюда данное уравнение имеет два корня – это 0 и –8.

Пример №5. Решить уравнение:

Здесь кроме переменной можно вынести за скобки еще и коэффициент 3, который является общим множителем для данных в уравнении коэффициентов. Получим: 3х(х–4)=0. Получаем два уравнения 3х=0 и х–4=0. Соответственно и два корня – нуль и 4.

Неполное квадратное уравнение с коэффициентами b и с равными нулю: ax 2 =0

Данное уравнение при любых значениях коэффициента а будет иметь один корень, равный нулю.

Пример №6. Решить уравнение:

Обе части уравнения делим на (–14) и получаем х 2 =0, откуда соответственно и единственный корень – нуль. Пример №6. Решить уравнение:

Также делим обе части на 23 и получаем х 2 =0. Значит, корень уравнения – нуль.

Квадратные уравнения (8 класс)

Уравнение называют квадратным, если его можно записать в виде \(ax^2+bx+c=0\), где \(x\) неизвестная, \(a\), \(b\) и \(с\) коэффициенты (то есть, некоторые числа, причем \(a≠0\)).

В первом примере \(a=3\), \(b=-26\), \(c=5\). В двух других \(a\),\(b\) и \(c\) не выражены явно. Но если эти уравнения преобразовать к виду \(ax^2+bx+c=0\), они обязательно появятся.

Коэффициент \(a\) называют первым или старшим коэффициентом, \(b\) – вторым коэффициентом, \(c\) – свободным членом уравнения.

Виды квадратных уравнений

Если в квадратном уравнении присутствуют все три его члена, его называют полным. В ином случае уравнение называется неполным.

Как решать квадратные уравнения

В данной статье мы рассмотрим вопрос решения полных квадратных уравнений. Про решение неполных — смотрите здесь .

Итак, стандартный алгоритм решения полного квадратного уравнения:

    Преобразовать уравнение к виду \(ax^2+bx+c=0\).

    Выписать значения коэффициентов \(a\), \(b\) и \(c\).
    Пока не отработали решение квадратных уравнений до автоматизма, не пропускайте этот этап! Особенно обратите внимание, что знак перед членом берется в коэффициент. То есть, для уравнения \(2x^2-3x+5=0\), коэффициент \(b=-3\), а не \(3\).

    Вычислить значение дискриминанта по формуле \(D=b^2-4ac\).

    Решите квадратное уравнение \(2x(1+x)=3(x+5)\)
    Решение:

    Теперь переносим все слагаемые влево, меняя знак.

    Уравнение приняло нужный нам вид. Выпишем коэффициенты.

    Найдем дискриминант по формуле \(D=b^2-4ac\).

    Найдем корни уравнения по формулам \(x_1=\frac<-b + \sqrt><2a>\) и \(x_2=\frac<-b - \sqrt><2a>\).

    Решите квадратное уравнение \(x^2+9=6x\)
    Решение:

    Тождественными преобразованиями приведем уравнение к виду \(ax^2+bx+c=0\).

    Найдем дискриминант по формуле \(D=b^2-4ac\).

    Найдем корни уравнения по формулам \(x_1=\frac<-b + \sqrt><2a>\) и \(x_1=\frac<-b - \sqrt><2a>\).

    В обоих корнях получилось одинаковое значение. Нет смысла писать его в ответ два раза.

    Решите квадратное уравнение \(3x^2+x+2=0\)
    Решение:

    Уравнение сразу дано в виде \(ax^2+bx+c=0\), преобразования не нужны. Выписываем коэффициенты.

    Найдем дискриминант по формуле \(D=b^2-4ac\).

    Найдем корни уравнения по формулам \(x_1=\frac<-b + \sqrt><2a>\) и \(x_1=\frac<-b - \sqrt><2a>\).

    Оба корня невычислимы, так как арифметический квадратный корень из отрицательного числа не извлекается.

    Обратите внимание, в первом уравнении у нас два корня, во втором – один, а в третьем – вообще нет корней. Это связано со знаком дискриминанта (подробнее смотри тут ).

    Также многие квадратные уравнения могут быть решены с помощью обратной теоремы Виета . Это быстрее, но требует определенного навыка.

    Пример. Решить уравнение \(x^2-7x+6=0\).
    Решение: Согласно обратной теореме Виета, корнями уравнения будут такие числа, которые в произведении дадут \(6\), а в сумме \(7\). Простым подбором получаем, что эти числа: \(1\) и \(6\). Это и есть наши корни (можете проверить решением через дискриминант).
    Ответ: \(x_1=1\), \(x_2=6\).

    Данную теорему удобно использовать с приведенными квадратными уравнениями, имеющими целые коэффициенты \(b\) и \(c\).

    Неполные квадратные уравнения

    Неполное квадратное уравнение – это уравнение вида

    в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:

    ax 2 + bx = 0,если c = 0;
    ax 2 + c = 0,если b = 0;
    ax 2 = 0,если b = 0 и c = 0.

    Решение неполных квадратных уравнений

    Чтобы решить уравнение вида ax 2 + bx = 0 , надо разложить левую часть уравнения на множители, вынеся x за скобки:

    Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит:

    Чтобы ax + b было равно нулю, нужно, чтобы

    x = —b.
    a

    Следовательно, уравнение ax 2 + bx = 0 имеет два корня:

    x1 = 0 и x2 = —b.
    a

    Неполные квадратные уравнения вида ax 2 + bx = 0, где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю.

    Пример 1. Решите уравнение:

    a 2 — 12a = 0
    a(a — 12) = 0
    a1 = 0a — 12 = 0
    a2 = 12

    Пример 2. Решите уравнение:

    7x 2 = x
    7x 2 — x = 0
    x(7x — 1) = 0
    x1 = 07x — 1 = 0
    7x = 1
    x2 =1
    7

    Чтобы решить уравнение вида ax 2 + c = 0 , надо перенести свободный член уравнения c в правую часть:

    ax 2 = —c, следовательно, x 2 = —c.
    a

    В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа.

    Если данное неполное уравнение будет иметь вид x 2 — c = 0 , то сначала опять переносим свободный член в правую часть и получаем:

    В этом случае уравнение будет иметь два противоположных корня:

    Неполное квадратное уравнение вида ax 2 + c = 0, где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами.

    Пример 1. Решите уравнение:

    24 = 2y 2
    24 — 2y 2 = 0
    -2y 2 = -24
    y 2 = 12
    y1 = +√ 12y2 = -√ 12

    Пример 2. Решите уравнение:

    b 2 — 16 = 0
    b 2 = 16
    b1 = 4b2 = -4

    Уравнение вида ax 2 = 0 всегда имеет только один корень: x = 0. Так как a ≠ 0, то из ax 2 = 0 следует, что x 2 = 0, значит, и x = 0. Любое другое значение x не будет являться корнем данного уравнения.


    источники:

    http://cos-cos.ru/math/121/

    http://izamorfix.ru/matematika/algebra/nepolnye_kv_ur.html