A решите уравнение cos9x cos7x 2sinx б укажите корни этого уравнения принадлежащие отрезку 3л

A решите уравнение cos9x cos7x 2sinx б укажите корни этого уравнения принадлежащие отрезку 3л

Пример 1.

а) Решить уравнение cos4x+cos2x=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [-π; π/3].

а) Решаем уравнение cos4x+cos2x=0.

Применим формулу

Tогда данное уравнение примет вид: 2cos3x⋅cosx=0. Отсюда следует, что либо cos3x=0 либо cosx=0.

  • Если cos3x=0, то 3х=π/2+πn, отсюда х=π/6+πn/3, где nϵZ.
  • Если cosx=0, то х=π/2+πn, где nϵZ.

Заметим, что решения уравнения cosx=0 входят в решения уравнения cos3x=0, поэтому общим решением данного уравнения будут числа x=π/6+πn/3, где nϵZ.

б) Найдём все корни этого уравнения, принадлежащие отрезку [-π; π/3].

Рассмотрим общее решение x=π/6+πn/3, где nϵZ на единичной окружности. Здесь значение πn/3 означает, что нужно брать n раз угол π/3. Отмечаем угол π/6, а затем углы, полученные поворотом угла π/6 на π/3, полученный таким образом угол π/2 опять повернём на π/3, получится угол 5π/6, затем угол 5π/6+ π/3=7π/6, следующий угол

7π/6+ π/3=9π/6=3π/2, и, наконец, 3π/2+ π/3=11π/6. Смотрите рисунок 1.

Все отмеченные углы рассмотрим на отрезке [-π; π/3]. Смотрим рисунок 2. Получились числа -5π/6; -π/2; -π/6; π/6.

Ответ: а) π/6+πn/3, где nϵZ; б) -5π/6; -π/2; -π/6; π/6.

Пример 2.

а) Решить уравнение cos4x-sin2x=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [0; π].

а) Применим формулу 1-cos2α=2sin 2 α ; тогда данное уравнение примет вид:

1-2sin 2 2x-sin2x=0; 2sin 2 2x+sin2x-1=0. Сделаем замену: sin2x=t.

Получаем равенство: 2t 2 +t-1=0.

У нас a-b+c=0, поэтому по методу коэффициентов t1=-1, t2=1/2.

  • При sin2x=-1 получаем 2х=-π/2+2πn, отсюда х=-π/4+πn, где nϵZ.
  • При sin2x=1/2 получаем 2х=π/6+2πn и 2х=5π/6+2πn, где nϵZ.

Тогда х=π/12+πn и х=5π/12+πn, где nϵZ.

Рассмотрим решения 2х=-π/2+2πn, 2х=π/6+2πn и 2х=5π/6+2πn на единичной окружности. Возьмём значения 2х при n=0. Углы -π/2, π/6 и 5π/6 отличаются друг от друга на значение 2π/3. Тогда общим решением будут являться числа

2х=π/6+(2π/3)n, отсюда общим решением данного уравнения будут

значения х=π/12+(π/3)n, где nϵZ.

б) Найдём все корни этого уравнения, принадлежащие отрезку [0; π]. Для этого в общее решение х=π/12+(π/3)n, где nϵZ будем подставлять такие целые значения nϵZ,

Возьмём n=0, тогда х=π/12 ϵ[0; π].

При n=1 получим х= π/12+π/3= π/12+4π/12=5π/12 ϵ[0; π].

При n=2 получим х= π/12+2π/3= π/12+8π/12=9π/12=3π/4 ϵ[0; π].

При n=3 получим х= π/12+π, и это значение не входит в заданный отрезок [0; π].

Ответ: а) π/12+(π/3)n, где nϵZ; б) π/12, 5π/12, 3π/4.

Пример 3.

а) Решить уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку [π; 3π/2].

а) Применим формулу cos(α-β)=cosα∙cosβ+sinα∙sinβ ; тогда данное уравнение примет вид:

cos3x=cos 2 3x; cos 2 3x-cos3x=0; cos3x(cos3x-1)=0;

cos3x=0 или cos3x-1=0.

  • Если cos3x=0, то 3х=π/2+πn, тогда х= π/6+(π/3)n, где nϵZ.
  • Если cos3x-1=0, то cos3x=1, тогда 3х=2πm, тогда х=(2π/3)m, где mϵZ.

Общие решения данного уравнения: х=π/6+(π/3)n, где nϵZ и х=(2π/3)m, где mϵZ.

б) Найдём все корни этого уравнения, принадлежащие отрезку [π; 3π/2].

Мы получили значения 3х=π/2+πn и 3х=2πm. Отметим их на единичной окружности, сделав замену 3х=t. Смотрите рисунок 3.

Необходимо выполнение условие хϵ[π; 3π/2]. Отсюда следует, что 3хϵ[3π; 9π/2].

Все отмеченные углы рассмотрим на отрезке [3π; 9π/2]. Смотрим рисунок 4. Получились числа 7π/2; 4π; 9π/2. Так как это значения 3х, то делим каждое из них на 3. Получим: 7π/6; 4π/3; 3π/2.

Ответ: а) π/6+(π/3)n, где nϵZ; (2π/3)m, где mϵZ.

Решение тригонометрических уравнений

Данный калькулятор предназначен для решения тригонометрических уравнений.
Тригонометрические уравнения – это уравнения, которые содержат в себе тригонометрические функции неизвестного аргумента. Под тригонометрическими функциями понимают математические функции от величины угла. Как правило, тригонометрические функции определяются как отношения сторон прямоугольного треугольника или длины определенных отрезков в единичной окружности.

К основным видам тригонометрических уравнений относят простейшие уравнения, содержащие модуль, с параметрами, с целой и дробной частью, со сложными аргументами, с обратными тригонометрическими функциями.

С помощью калькулятора можно вычислить корни тригонометрического уравнения.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Задания по теме «Тригонометрические уравнения»

Открытый банк заданий по теме тригонометрические уравнения. Задания C1 из ЕГЭ по математике (профильный уровень)

Задание №1179

Условие

а) Решите уравнение 2(\sin x-\cos x)=tgx-1.

б) Укажите корни этого уравнения, принадлежащие промежутку \left[ \frac<3\pi >2;\,3\pi \right].

Решение

а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 \sin x-2 \cos x-tg x=0. Учитывая, что \cos x \neq 0, слагаемое 2 \sin x можно заменить на 2 tg x \cos x, получим уравнение 1+2 tg x \cos x-2 \cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 \cos x)=0.

1) 1-tg x=0, tg x=1, x=\frac\pi 4+\pi n, n \in \mathbb Z;

2) 1-2 \cos x=0, \cos x=\frac12, x=\pm \frac\pi 3+2\pi n, n \in \mathbb Z.

б) С помощью числовой окружности отберём корни, принадлежащие промежутку \left[ \frac<3\pi >2;\, 3\pi \right].

x_1=\frac\pi 4+2\pi =\frac<9\pi >4,

x_2=\frac\pi 3+2\pi =\frac<7\pi >3,

x_3=-\frac\pi 3+2\pi =\frac<5\pi >3.

Ответ

а) \frac\pi 4+\pi n, \pm\frac\pi 3+2\pi n, n \in \mathbb Z;

б) \frac<5\pi >3, \frac<7\pi >3, \frac<9\pi >4.

Задание №1178

Условие

а) Решите уравнение (2\sin ^24x-3\cos 4x)\cdot \sqrt =0.

б) Укажите корни этого уравнения, принадлежащие промежутку \left( 0;\,\frac<3\pi >2\right] ;

Решение

а) ОДЗ: \begin tgx\geqslant 0\\x\neq \frac\pi 2+\pi k,k \in \mathbb Z. \end

Исходное уравнение на ОДЗ равносильно совокупности уравнений

\left[\!\!\begin 2 \sin ^2 4x-3 \cos 4x=0,\\tg x=0. \end\right.

Решим первое уравнение. Для этого сделаем замену \cos 4x=t, t \in [-1; 1]. Тогда \sin^24x=1-t^2. Получим:

t_1=\frac12, t_2=-2, t_2\notin [-1; 1].

4x=\pm \frac\pi 3+2\pi n,

x=\pm \frac\pi <12>+\frac<\pi n>2, n \in \mathbb Z.

Решим второе уравнение.

tg x=0,\, x=\pi k, k \in \mathbb Z.

При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.

Получим: x=\pi k, k \in \mathbb Z; x=\frac\pi <12>+\pi n, n \in \mathbb Z; x=\frac<5\pi ><12>+\pi m, m \in \mathbb Z.

б) Найдём корни, принадлежащие промежутку \left( 0;\,\frac<3\pi >2\right].

Ответ

а) \pi k, k \in \mathbb Z; \frac\pi <12>+\pi n, n \in \mathbb Z; \frac<5\pi ><12>+\pi m, m \in \mathbb Z.

Задание №1177

Условие

а) Решите уравнение: \cos ^2x+\cos ^2\frac\pi 6=\cos ^22x+\sin ^2\frac\pi 3;

б) Укажите все корни, принадлежащие промежутку \left( \frac<7\pi >2;\,\frac<9\pi >2\right].

Решение

а) Так как \sin \frac\pi 3=\cos \frac\pi 6, то \sin ^2\frac\pi 3=\cos ^2\frac\pi 6, значит, заданное уравнение равносильно уравнению \cos^2x=\cos ^22x, которое, в свою очередь, равносильно уравнению \cos^2x-\cos ^2 2x=0.

Но \cos ^2x-\cos ^22x= (\cos x-\cos 2x)\cdot (\cos x+\cos 2x) и

\cos 2x=2 \cos ^2 x-1, поэтому уравнение примет вид

(\cos x-(2 \cos ^2 x-1))\,\cdot (\cos x+(2 \cos ^2 x-1))=0,

(2 \cos ^2 x-\cos x-1)\,\cdot (2 \cos ^2 x+\cos x-1)=0.

Тогда либо 2 \cos ^2 x-\cos x-1=0, либо 2 \cos ^2 x+\cos x-1=0.

Решая первое уравнение как квадратное уравнение относительно \cos x, получаем:

(\cos x)_<1,2>=\frac<1\pm\sqrt 9>4=\frac<1\pm3>4. Поэтому либо \cos x=1, либо \cos x=-\frac12. Если \cos x=1, то x=2k\pi , k \in \mathbb Z. Если \cos x=-\frac12, то x=\pm \frac<2\pi >3+2s\pi , s \in \mathbb Z.

Аналогично, решая второе уравнение, получаем либо \cos x=-1, либо \cos x=\frac12. Если \cos x=-1, то корни x=\pi +2m\pi , m \in \mathbb Z. Если \cos x=\frac12, то x=\pm \frac\pi 3+2n\pi , n \in \mathbb Z.

Объединим полученные решения:

x=m\pi , m \in \mathbb Z; x=\pm \frac\pi 3 +s\pi , s \in \mathbb Z.

б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

Получим: x_1 =\frac<11\pi >3, x_2=4\pi , x_3 =\frac<13\pi >3.

Ответ

а) m\pi, m \in \mathbb Z; \pm \frac\pi 3 +s\pi , s \in \mathbb Z;

б) \frac<11\pi >3, 4\pi , \frac<13\pi >3.

Задание №1176

Условие

а) Решите уравнение 10\cos ^2\frac x2=\frac<11+5ctg\left( \dfrac<3\pi >2-x\right) ><1+tgx>.

б) Укажите корни этого уравнения, принадлежащие интервалу \left( -2\pi ; -\frac<3\pi >2\right).

Решение

а) 1. Согласно формуле приведения, ctg\left( \frac<3\pi >2-x\right) =tgx. Областью определения уравнения будут такие значения x , что \cos x \neq 0 и tg x \neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 \cos ^2 \frac x2=1+\cos x. Получим уравнение: 5(1+\cos x) =\frac<11+5tgx><1+tgx>.

Заметим, что \frac<11+5tgx><1+tgx>= \frac<5(1+tgx)+6><1+tgx>= 5+\frac<6><1+tgx>, поэтому уравнение принимает вид: 5+5 \cos x=5 +\frac<6><1+tgx>. Отсюда \cos x =\frac<\dfrac65><1+tgx>, \cos x+\sin x =\frac65.

2. Преобразуем \sin x+\cos x по формуле приведения и формуле суммы косинусов: \sin x=\cos \left(\frac\pi 2-x\right), \cos x+\sin x= \cos x+\cos \left(\frac\pi 2-x\right)= 2\cos \frac\pi 4\cos \left(x-\frac\pi 4\right)= \sqrt 2\cos \left( x-\frac\pi 4\right) = \frac65.

Отсюда \cos \left(x-\frac\pi 4\right) =\frac<3\sqrt 2>5. Значит, x-\frac\pi 4= arc\cos \frac<3\sqrt 2>5+2\pi k, k \in \mathbb Z,

или x-\frac\pi 4= -arc\cos \frac<3\sqrt 2>5+2\pi t, t \in \mathbb Z.

Поэтому x=\frac\pi 4+arc\cos \frac<3\sqrt 2>5+2\pi k,k \in \mathbb Z,

или x =\frac\pi 4-arc\cos \frac<3\sqrt 2>5+2\pi t,t \in \mathbb Z.

Найденные значения x принадлежат области определения.

б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=\frac\pi 4+arccos \frac<3\sqrt 2>5 и b=\frac\pi 4-arccos \frac<3\sqrt 2>5.

1. Докажем вспомогательное неравенство:

Заметим также, что \left( \frac<3\sqrt 2>5\right) ^2=\frac<18> <25>значит \frac<3\sqrt 2>5

2. Из неравенств (1) по свойству арккосинуса получаем:

Отсюда \frac\pi 4+0

Аналогично, -\frac\pi 4

0=\frac\pi 4-\frac\pi 4 \frac\pi 4

При k=-1 и t=-1 получаем корни уравнения a-2\pi и b-2\pi.

\Bigg( a-2\pi =-\frac74\pi +arccos \frac<3\sqrt 2>5,\, b-2\pi =-\frac74\pi -arccos \frac<3\sqrt 2>5\Bigg). При этом -2\pi

-2\pi Значит, эти корни принадлежат заданному промежутку \left( -2\pi , -\frac<3\pi >2\right).

При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

Действительно, если k\geqslant 1 и t\geqslant 1, то корни больше 2\pi. Если k\leqslant -2 и t\leqslant -2, то корни меньше -\frac<7\pi >2.

Ответ

а) \frac\pi4\pm arccos\frac<3\sqrt2>5+2\pi k, k\in\mathbb Z;

б) -\frac<7\pi>4\pm arccos\frac<3\sqrt2>5.

Задание №1175

Условие

а) Решите уравнение \sin \left( \frac\pi 2+x\right) =\sin (-2x).

б) Найдите все корни этого уравнения, принадлежащие промежутку [0; \pi ];

Решение

а) Преобразуем уравнение:

\cos x+2 \sin x \cos x=0,

x =\frac\pi 2+\pi n, n \in \mathbb Z;

x=(-1)^\cdot \frac\pi 6+\pi k, k \in \mathbb Z.

б) Корни, принадлежащие отрезку [0; \pi ], найдём с помощью единичной окружности.

Указанному промежутку принадлежит единственное число \frac\pi 2.

Ответ

а) \frac\pi 2+\pi n, n \in \mathbb Z; (-1)^\cdot \frac\pi 6+\pi k, k \in \mathbb Z;

б) \frac\pi 2.

Задание №1174

Условие

б) Найдите все корни этого уравнения, принадлежащие отрезку \left[ -\frac<3\pi ><2>; -\frac<\pi >2 \right].

Решение

а) Найдём ОДЗ уравнения: \cos 2x \neq -1, \cos (\pi +x) \neq -1; Отсюда ОДЗ: x \neq \frac \pi 2+\pi k,

k \in \mathbb Z, x \neq 2\pi n, n \in \mathbb Z. Заметим, что при \sin x=1, x=\frac \pi 2+2\pi k, k \in \mathbb Z.

Полученное множество значений x не входит в ОДЗ.

Значит, \sin x \neq 1.

Разделим обе части уравнения на множитель (\sin x-1), отличный от нуля. Получим уравнение \frac 1<1+\cos 2x>=\frac 1<1+\cos (\pi +x)>, или уравнение 1+\cos 2x=1+\cos (\pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 \cos ^2 x=1-\cos x. Это уравнение с помощью замены \cos x=t, где -1 \leqslant t \leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=\frac12. Возвращаясь к переменной x , получим \cos x = \frac12 или \cos x=-1, откуда x=\frac \pi 3+2\pi m, m \in \mathbb Z, x=-\frac \pi 3+2\pi n, n \in \mathbb Z, x=\pi +2\pi k, k \in \mathbb Z.

б) Решим неравенства

1) -\frac<3\pi >2 \leqslant \frac<\pi >3+2\pi m \leqslant -\frac \pi 2 ,

2) -\frac<3\pi >2 \leqslant -\frac \pi 3+2\pi n \leqslant -\frac \pi

3) -\frac<3\pi >2 \leqslant \pi+2\pi k \leqslant -\frac \pi 2 , m, n, k \in \mathbb Z.

1) -\frac<3\pi >2 \leqslant \frac<\pi >3+2\pi m \leqslant -\frac \pi 2 , -\frac32 \leqslant \frac13+2m \leqslant -\frac12 -\frac<11>6 \leqslant 2m \leqslant -\frac56 , -\frac<11> <12>\leqslant m \leqslant -\frac5<12>.

Нет целых чисел, принадлежащих промежутку \left [-\frac<11><12>;-\frac5<12>\right] .

2) -\frac <3\pi>2 \leqslant -\frac<\pi >3+2\pi n \leqslant -\frac<\pi ><2>, -\frac32 \leqslant -\frac13 +2n \leqslant -\frac12 , -\frac76 \leqslant 2n \leqslant -\frac1<6>, -\frac7 <12>\leqslant n \leqslant -\frac1<12>.

Нет целых чисел, принадлежащих промежутку \left[ -\frac7 <12>; -\frac1 <12>\right].

3) -\frac<3\pi >2 \leqslant \pi +2\pi k\leqslant -\frac<\pi >2, -\frac32 \leqslant 1+2k\leqslant -\frac12, -\frac52 \leqslant 2k \leqslant -\frac32, -\frac54 \leqslant k \leqslant -\frac34.

Этому неравенству удовлетворяет k=-1, тогда x=-\pi.

Ответ

а) \frac \pi 3+2\pi m; -\frac \pi 3+2\pi n; \pi +2\pi k, m, n, k \in \mathbb Z;


источники:

http://allcalc.ru/node/669

http://academyege.ru/theme/trigonometricheskie-uravneniya-3.html