Частное уравнение регрессии имеет вид

Частные уравнения множественной регрессии. Индексы множественной и частной корреляции и их расчет

На основе линейного уравнения множественной регрессии

могут быть найдены частные уравнения регрессии:

(25.1)

т.е. уравнения регрессии, которые связывают результативный признак с соответствующими факторами хi при закреплении других учитываемых во множественной регрессии факторов на среднем уровне. В случае линейной регрессии частные уравнения имеют следующий вид:

(25.2)

Подставляя в эти уравнения средние значения соответствующих факторов получаем систему уравнений линейной регрессии, т.е. имеем:

(25.3)

где (25.4)

Частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на низменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии (Аi).Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности

(25.5)

На основании данной информации могут быть найдены средние по совокупности показатели эластичности: .

Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции и его квадрата – коэффициента детерминации. Показатель множественной корреляции характеризует тесноту совместного влияния факторов на результат.

Независимо от вида уравнения индекс множественной корреляции рассчитывается по формуле:

, (25.6)

где σ 2 y — общая дисперсия результативного признака,

σ 2 ост — остаточная дисперсия .

Чем ближе его значение к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.

Сравнивая индексы множественной регрессии и парной корреляции, можно сделать вывод о целесообразности включения в уравнение регрессии того или иного фактора. В частности, если дополнительно включенные в уравнение множественной регрессии факторы третьестепенны, то индекс множественной корреляции практически совпадает с индексом парной корреляции.

Если оценивается значимость влияния фактора хi в уравнении регрессии, то определяется частный F- критерий:

(25.7)

Значимость коэффициентов чистой регрессии производится по t — критерию Стьюдента.

24. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии

Частные коэффициенты (или индексы) корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии.

Чем больше доля полученной разности в остаточной вариации, тем теснее связь между у и x2 , при неизменности действия фактора x1

Величина, рассчитываемая формулой:

(26.1)

называется индексом частной корреляции для фактора х2:

Аналогично определяется индекс частной корреляции для фактора x1.

Выражая остаточную дисперсию через показатель детерминации

S 2 ост = σ 2 у (1-r 2 ), имеем формулу частной корреляции:

(26.2)

25. Коэффициент множественной корреляции

Практическая значимость уравнения множественной регрессии оценивается показателем множественной корреляции

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым при знаком, или оценивает тесноту совместного влияния факторов на результат.

Независимо от формы связи показатель множественной корреляции можёт быть найден как индекс множественной корреляции:

(27.1)

σ 2 ост – остаточная дисперсия для уравнения у=f(x1,x2,… xр)

σ 2 у – общая дисперсия результативного признака

Методика построения индекса множественной корреляции аналогична построению индекса корреляции для парной зависимости. Его пределы от 0 до 1. Чем ближе его значение к 1, тем теснее связь результативного признака со всем I бором исследуемых факторов. Величина индекса множественно корреляции должна быть больше или равна максимальному парному индексу корреляции: —

(27.2)

Обоснованность включения факторов в регрессионный анализ приведет к существенному отличию показателя от индекса корреляции парной зависимости. При включении модель маловажных факторов происходит уравнение индекса множественной корреляции с индексом парной корреляции. Сравнивая индексы множественной и парной корреляции делают заключение о возможности включения в уравнение регрессии того или иного фактора.

Расчет индекса множественной Корреляции предполагает определение уравнения множественной регрессии и на его основе остаточной дисперсии:

(27.3)

Возможна и такая интерпретация формулы индекса множественной корреляции

(27.4)

26. Коэффициент множественной детерминации

Коэффициент детерминации –это квадрат показателем множественной корреляции.

Множественный коэффициент детерминации можно рассматривать как меру качества уравнения регрессии, характеристику прогностической силы анализируемой регрессионной модели: чем ближе R 2 к единице, тем лучше регрессия описывает зависимость между объясняющими и зависимой переменными. Недостаток R 2 состоит в том, что его значение не убывает с ростом числа объясняющих переменных. В эконометрическом анализе чаще применяют скорректированный коэффициент детерминации R^ 2 определяемый по формуле

(28.1)

который может уменьшаться при введении в регрессионную модель переменных, не оказывающих существенного влияния на зависимую переменную.

Если известен коэффициент детерминации R 2 то критерий значимости уравнения регрессии может быть записан в виде:

(28.2)

где ‚ к1= р, к2 = n — р — 1, ибо в уравнении множественной регрессии вместе со свободным членом оценивается m = р + 1 параметров.

27. Проверка гипотезы о значимости частного и множественного коэффициентов корреляции

Проверка гипотез используется, когда необходим обоснованный вывод о значимости частного и множественного коэффициентов корреляции. При этом гипотезой называется любое предположение о виде или параметрах неизвестного закона распределения.

Множественный коэффициент корреляции заключен в пре делах 0 до1. Он не меньше, чем абсолютная величина любого парного или частного коэффициента корреляции с таким же первичным индексом.

С помощью множественного коэффициента корреляции (по мере приближения к 1 делается вывод о тесноте взаимосвязи, но не о ее направлении.

Частный коэффициент корреляции. Если переменные коррелируют друг с другом, то на величине парного коэффициента корреляции частично сказывается влияние других переменных. В связи с этим часто возникает необходимость исследовать частную корреляцию между переменными при устранении влияния одной/нескольких переменных

28. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом

Основной предпосылкой регрессионного анализа является то, что толь­ко результативный признак (У) подчиняется нормальному закону распре­деления, а факторные признаки х 1 . Х 2 . х n могут иметь произвольный закон распределения. В анализе динамических рядов в качестве фактор­ного признака выступает время t При этом в регрессионном анализе зара­нее подразумевается наличие причинно-следственных связей между ре­зультативным (У) и факторными х 1 . Х 2 . х n признаками. В тех случаях, когда из природы процессов в модели или из данных наблюдений над ней следует вывод о нормальном законе распределения двух СВ — Y и X , из которых одна является независимой, т. е. Y является функцией X , то возникает соблазн определить такую зависимость “формульно”, аналитически.Уравнение регрессии, или статистическая модель связи социально-эко­номических явлений, выражаемая функцией Y=f( х 1 . Х 2 . х n ) является достаточно адекватным реальному моделируемому явлению или процессу в случае соблюдения следующих требований их построе­ния. 1) Совокупность исследуемых исходных данных должна быть одно­родной и математически описываться непрерывными функциями. 2) Возможность описания моделируемого явления одним или несколь­кими уравнениями причинно-следственных связей. 3) Все факторные признаки должны иметь количественное (цифровое) выражение. 4) Наличие достаточно большого объема исследуемой выборочной со­вокупности. 5) Причинно-следственные связи между явлениями и процессами сле­дует описывать линейной или приводимой к линейной формой зависимо­сти. 6) Отсутствие количественных ограничений на параметры модели свя­зи. 7) Постоянство территориальной и временной структуры изучаемойсовокупности. Соблюдение данных требований позволяет исследователю построить статистическую модель связи, наилучшим образом аппроксимирующую моделируемые социально-экономические явления и процессы. В случае успеха нам будет намного проще вести моделирование. Конечно, наиболее заманчивой является перспектива линейной зависимости типа Y = a + b · X . Подобная задача носит название задачи регрессионного анализа и предполагает следующий способ решения. Выдвигается следующая гипотеза H 0 : случайная величина Y при фиксированном значении величины X распределена нормально с математическим ожиданием М y = a + b · X и дисперсией D y , не зависящей от X . При наличии результатов наблюдений над парами X i и Y i предварительно вычисляются средние значения M y и M x , а затем производится оценка коэффициента b в виде b = = R xy что следует из определениякоэффициента корреляции. После этого вычисляется оценка для a в виде <2 - 16>и производится проверка значимости полученных результатов. Таким образом, регрессионный анализ является мощным, хотя и далеко не всегда допустимым расширением корреляционного анализа, решая всё ту же задачу оценки связей в сложной системе.

29. Определение мультиколлинеарности. Последствия мулыиколлицеарности. Методы обнаружения мультиколлинеарности

Мультиколлинеарность -это процесс, при котором между факторами происходит совокупное воздействие друг на друга

Наличие мультиколлинеарности факторов может означать, что некоторые факторы действуют синхронно. В итоге вариация в исходных данных зависима и невозможно оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов.

Если рассматривается регрессия у = а + b * х + с * z + d * v + ε то для расчета параметров с применением МНК предполагается равенство:

(31.1)

где — общая сумма квадратов отклонений Σ(уi-у¯) 2

— факторная сумма квадратов отклонений: Σ(у^i-у¯) 2

— остаточная сумма квадратов отклонений Σ(у^i-у) 2

Если же факторы интеркоррелированы, то данное равенство нарушается.

Включение в модель мультиколлинеарных факторов нежелательно по причинам:

• затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в чистом виде, т.к. факторы коррелированны. При этом параметры линейной регрессии утрачивают экономический смысл;

• оценки параметров ненадежны, появляются стандартные ошибки, которые меняются с изменением объема наблюдений (по величине и знаку), Модель нельзя анализировать и строить на ее основе прогнозы.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных Коэффициентов корреляции между факторами.

Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между ними была бы единичной, т.к. все элементы не находящиеся на диагоналях равны 0. Для уравнения включающее три объясняющих переменных,

у = а + b1 * х1 + b2 * х2 + b3 * х3 +ε, при этом матрица коэффициентов корреляции между факторами имела определитель равный единице.

(31.2)

Если же между факторами существует полная линейная зависимость и все Коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю.

(31.3)

Чем ближе к — нулю определитель матрицы межфакторной корреляции тем сильнее мультиколлинеарность факторов и ненадежнее результаты множествснной регрессии. Наоборот чем ближе к единице определитель матрицы межфакторной корреляции тем меньше мультиколлинеарность факторов.

30. Методы устранения мультиколлинеарности

Устраняя мультиколлинеарность факторов чаще всего используют приведенную форму. Для этого в уравнение регрессии подставляют рассматриваемый фактор, выраженный из другого уравнения.

В двухфакторной регрессии вида

(32.1)

сделав предобразования получим:

(32.2)

Если исключить один из факторов, то мы придем к уравнению парной регрессии. Вместе с тем, можно оставить факторы в модели, но исследовать данное двух факторное уравнение регрессии совместно с другим уравнением, в котором фактор рассматривается как зависимая переменная. При (1-b2*В) ≠ 0, делим первую и вторую части уравнения на (1-b2*В), получаем:

(32.3)

Получили приведенную форму уравнения для определения результативного признака у. Это уравнение может быть представлено в виде (32.4)

К нему для оценки параметров может быть применен метод наименьших квадратов.

Отбор факторов, включаемых в регрессию -основной этап практического использования методов регрессии. Подходы к отбору факторов на основе показателей корреляции могут различны. Они приводят построение уравнение множественной регрессии соответственно к разным методикам.

Наиболее распространены методы построения уравнения множественной регрессии:

• шаговый регрессионный анализ.

Каждый метод помогает устранить мультиколлинеарность позволяя производить отсев факторов из полного его набора (метод исключения), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ).

На первый Взгляд может показаться, что матрица парных коэффициентов корреляции играет главную роль в отборе факторов. Вместе с тем вследствие взаимодействия факторов парные коэффициенты корреляции не могут полностью решать вопрос целесообразности включения в модель того определенного фактора. Эту роль выполняют показатели частной корреляции, оценивающие в чистом виде тесноту связи фактора с результатом. Матрица частных коэффициентов корреляции наиболее широко используется в процедуре отсева факторов. Отсев факторов можно проводить и по t-критерию Стьюдента для коэффициентов регрессии: из уравнения исключаются факторы с величиной t-критерия меньше табличного.

В заключении следует уточнить: число включаемых факторов обычно в 6—7 раз меньше объема совокупности, по которой строится регрессия. Если это соотношение нарушено, то число степеней свободы остаточной вариации очень мало. Это приводит к тому, что пара метры уравнения регрессии оказываются статистически незначимыми, а Р-критерий меньше табличного значения.

31. Модели регрессии, нелинейные по факторным переменным

Если между экономическими явлениями существуют нели­нейные соотношения, то они выражаются с помощью соответ­ствующих нелинейных функций: например, равносторонней ги­перболы , параболы второй степени и д.р.

Различают два класса нелинейных регрессий:

• регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым па­раметрам;

• регрессии, нелинейные по оцениваемым параметрам.
Примером нелинейной регрессии по включаемым в нее объ­ясняющим переменным могут служить следующие функции:

• полиномы разных степеней

К нелинейным регрессиям по оцениваемым параметрам от­носятся функции:

§ 10. Частные уравнения регрессии

На основе линейного уравнения множественной регрессии:

могут быть найдены частные уравнения регрессии, которые связывают зависимую переменную Y с объясняющей переменной Xj при закреплении остальных объясняющих переменных на среднем уровне.

При подстановке в эти уравнения средних значений соответствующих объясняющих переменных они принимают вид уравнений парной линейной регрессии. Оценки моделей примут вид:

где свободные коэффициенты равны:

В отличие от парной регрессии частные уравнения регрессии характеризуют изолированное влияние объясняющей переменной на зависимую, ибо остальные объясняющие переменные модели закреплены на неизменном уровне. Влияние остальных объясняющих переменных присоединено к свободным коэффициентам Bj. Это позволяет определить частные коэффициенты эластичности:

Множественная линейная регрессия является обобщением парной линейной регрессии на несколько объясняющих переменных.

Вопросы для самопроверки

  1. С какой целью применяется скорректированный коэффициент детерминации? Запишите формулу для его расчета.
  2. Как ведет себя обычный коэффициент детерминации при введении в модель множественной линейной регрессии дополнительной объясняющей переменной?
  3. Какая дополнительная, по сравнению с парной регрессией, предпосылка Гаусса-Маркова используется в модели множественной регрессии?
  4. Что и при каких условиях показывает коэффициент при какой-либо объясняющей переменной в модели множественной линейной регрессии?
  5. Как связаны коэффициенты модели в исходных и стандартизованных переменных?
  6. Каков смысл коэффициентов при объясняющих переменных в стандартизованной модели?
  7. Через какую точку всегда проходит график уравнения парной линейной регрессии в стандартизованной модели?
  8. Через какую точку всегда проходит график уравнения парной линейной регрессии в исходных переменных?
  9. Пусть все стандартизованные объясняющие переменные равны нулю. Чему равно значение стандартизованной зависимой переменной? Чему при этом равно значение исходной зависимой переменной?
  10. Как получают частные уравнения регрессии?
  11. Как получают стандартизованные значения переменных?
  12. Студент построил следующую модель:

у = b 0 + b1X1 + b 2 x 2,

где y — прибыль, x1 — выручка, x2 — затраты. Каким числам будут равны коэффициенты уравнения? Чему равен коэффициент детерминации? Как называется такая зависимость?

Уравнение регрессии. Уравнение множественной регрессии

Во время учебы студенты очень часто сталкиваются с разнообразными уравнениями. Одно из них – уравнение регрессии — рассмотрено в данной статье. Такой тип уравнения применяется специально для описания характеристики связи между математическими параметрами. Данный вид равенств используют в статистике и эконометрике.

Определение понятия регрессии

В математике под регрессией подразумевается некая величина, описывающая зависимость среднего значения совокупности данных от значений другой величины. Уравнение регрессии показывает в качестве функции определенного признака среднее значение другого признака. Функция регрессии имеет вид простого уравнения у = х, в котором у выступает зависимой переменной, а х – независимой (признак-фактор). Фактически регрессия выражаться как у = f (x).

Какие бывают типы связей между переменными

В общем, выделяется два противоположных типа взаимосвязи: корреляционная и регрессионная.

Первая характеризуется равноправностью условных переменных. В данном случае достоверно не известно, какая переменная зависит от другой.

Если же между переменными не наблюдается равноправности и в условиях сказано, какая переменная объясняющая, а какая – зависимая, то можно говорить о наличии связи второго типа. Для того чтобы построить уравнение линейной регрессии, необходимо будет выяснить, какой тип связи наблюдается.

Виды регрессий

На сегодняшний день выделяют 7 разнообразных видов регрессии: гиперболическая, линейная, множественная, нелинейная, парная, обратная, логарифмически линейная.

Гиперболическая, линейная и логарифмическая

Уравнение линейной регрессии применяют в статистике для четкого объяснения параметров уравнения. Оно выглядит как у = с+т*х+Е. Гиперболическое уравнение имеет вид правильной гиперболы у = с + т / х + Е. Логарифмически линейное уравнение выражает взаимосвязь с помощью логарифмической функции: In у = In с + т* In x + In E.

Множественная и нелинейная

Два более сложных вида регрессии – это множественная и нелинейная. Уравнение множественной регрессии выражается функцией у = f(х1 , х2 . хс)+E. В данной ситуации у выступает зависимой переменной, а х – объясняющей. Переменная Е — стохастическая, она включает влияние других факторов в уравнении. Нелинейное уравнение регрессии немного противоречиво. С одной стороны, относительно учтенных показателей оно не линейное, а с другой стороны, в роли оценки показателей оно линейное.

Обратные и парные виды регрессий

Обратная – это такой вид функции, который необходимо преобразовать в линейный вид. В самых традиционных прикладных программах она имеет вид функции у = 1/с + т*х+Е. Парное уравнение регрессии демонстрирует взаимосвязь между данными в качестве функции у = f (x) + Е. Точно так же, как и в других уравнениях, у зависит от х, а Е — стохастический параметр.

Понятие корреляции

Это показатель, демонстрирующий существование взаимосвязи двух явлений или процессов. Сила взаимосвязи выражается в качестве коэффициента корреляции. Его значение колеблется в рамках интервала [-1;+1]. Отрицательный показатель говорит о наличии обратной связи, положительный – о прямой. Если коэффициент принимает значение, равное 0, то взаимосвязи нет. Чем ближе значение к 1 – тем сильнее связь между параметрами, чем ближе к 0 – тем слабее.

Методы

Корреляционные параметрические методы могут оценить тесноту взаимосвязи. Их используют на базе оценки распределения для изучения параметров, подчиняющихся закону нормального распределения.

Параметры уравнения линейной регрессии необходимы для идентификации вида зависимости, функции регрессионного уравнения и оценивания показателей избранной формулы взаимосвязи. В качестве метода идентификации связи используется поле корреляции. Для этого все существующие данные необходимо изобразить графически. В прямоугольной двухмерной системе координат необходимо нанести все известные данные. Так образуется поле корреляции. Значение описывающего фактора отмечаются вдоль оси абсцисс, в то время как значения зависимого – вдоль оси ординат. Если между параметрами есть функциональная зависимость, они выстраиваются в форме линии.

В случае если коэффициент корреляции таких данных будет менее 30 %, можно говорить о практически полном отсутствии связи. Если он находится между 30 % и 70 %, то это говорит о наличии связей средней тесноты. 100 % показатель – свидетельство функциональной связи.

Нелинейное уравнение регрессии так же, как и линейное, необходимо дополнять индексом корреляции (R).

Корреляция для множественной регрессии

Коэффициент детерминации является показателем квадрата множественной корреляции. Он говорит о тесноте взаимосвязи представленного комплекса показателей с исследуемым признаком. Он также может говорить о характере влияния параметров на результат. Уравнение множественной регрессии оценивают с помощью этого показателя.

Для того чтобы вычислить показатель множественной корреляции, необходимо рассчитать его индекс.

Метод наименьших квадратов

Данный метод является способом оценивания факторов регрессии. Его суть заключается в минимизировании суммы отклонений в квадрате, полученных вследствие зависимости фактора от функции.

Парное линейное уравнение регрессии можно оценить с помощью такого метода. Этот тип уравнений используют в случае обнаружения между показателями парной линейной зависимости.

Параметры уравнений

Каждый параметр функции линейной регрессии несет определенный смысл. Парное линейное уравнение регрессии содержит два параметра: с и т. Параметр т демонстрирует среднее изменение конечного показателя функции у, при условии уменьшения (увеличения) переменной х на одну условную единицу. Если переменная х – нулевая, то функция равняется параметру с. Если же переменная х не нулевая, то фактор с не несет в себе экономический смысл. Единственное влияние на функцию оказывает знак перед фактором с. Если там минус, то можно сказать о замедленном изменении результата по сравнению с фактором. Если там плюс, то это свидетельствует об ускоренном изменении результата.

Каждый параметр, изменяющий значение уравнения регрессии, можно выразить через уравнение. Например, фактор с имеет вид с = y – тх.

Сгруппированные данные

Бывают такие условия задачи, в которых вся информация группируется по признаку x, но при этом для определенной группы указываются соответствующие средние значения зависимого показателя. В таком случае средние значения характеризуют, каким образом изменяется показатель, зависящий от х. Таким образом, сгруппированная информация помогает найти уравнение регрессии. Ее используют в качестве анализа взаимосвязей. Однако у такого метода есть свои недостатки. К сожалению, средние показатели достаточно часто подвергаются внешним колебаниям. Данные колебания не являются отображением закономерности взаимосвязи, они всего лишь маскируют ее «шум». Средние показатели демонстрируют закономерности взаимосвязи намного хуже, чем уравнение линейной регрессии. Однако их можно применять в виде базы для поиска уравнения. Перемножая численность отдельной совокупности на соответствующую среднюю можно получить сумму у в пределах группы. Далее необходимо подбить все полученные суммы и найти конечный показатель у. Чуть сложнее производить расчеты с показателем суммы ху. В том случае если интервалы малы, можно условно взять показатель х для всех единиц (в пределах группы) одинаковым. Следует перемножить его с суммой у, чтобы узнать сумму произведений x на у. Далее все суммы подбиваются вместе и получается общая сумма ху.

Множественное парное уравнение регрессии: оценка важности связи

Как рассматривалось ранее, множественная регрессия имеет функцию вида у = f (x1,x2,…,xm)+E. Чаще всего такое уравнение используют для решения проблемы спроса и предложения на товар, процентного дохода по выкупленным акциям, изучения причин и вида функции издержек производства. Ее также активно применяют в самых разнообразным макроэкономических исследованиях и расчетах, а вот на уровне микроэкономики такое уравнение применяют немного реже.

Основной задачей множественной регрессии является построение модели данных, содержащих огромное количество информации, для того чтобы в дальнейшем определить, какое влияние имеет каждый из факторов по отдельности и в их общей совокупности на показатель, который необходимо смоделировать, и его коэффициенты. Уравнение регрессии может принимать самые разнообразные значения. При этом для оценки взаимосвязи обычно используется два типа функций: линейная и нелинейная.

Линейная функция изображается в форме такой взаимосвязи: у = а0 + a1х1 + а2х2,+ . + amxm. При этом а2, am, считаются коэффициентами «чистой» регрессии. Они необходимы для характеристики среднего изменения параметра у с изменением (уменьшением или увеличением) каждого соответствующего параметра х на одну единицу, с условием стабильного значения других показателей.

Нелинейные уравнения имеют, к примеру, вид степенной функции у=ах1 b1 х2 b2 . xm bm . В данном случае показатели b1, b2. bm – называются коэффициентами эластичности, они демонстрируют, каким образом изменится результат (на сколько %) при увеличении (уменьшении) соответствующего показателя х на 1 % и при стабильном показателе остальных факторов.

Какие факторы необходимо учитывать при построении множественной регрессии

Для того чтобы правильно построить множественную регрессию, необходимо выяснить, на какие именно факторы следует обратить особое внимание.

Необходимо иметь определенное понимание природы взаимосвязей между экономическими факторами и моделируемым. Факторы, которые необходимо будет включать, обязаны отвечать следующим признакам:

  • Должны быть подвластны количественному измерению. Для того чтобы использовать фактор, описывающий качество предмета, в любом случае следует придать ему количественную форму.
  • Не должна присутствовать интеркорреляция факторов, или функциональная взаимосвязь. Такие действия чаще всего приводят к необратимым последствиям – система обыкновенных уравнений становится не обусловленной, а это влечет за собой ее ненадежность и нечеткость оценок.
  • В случае существования огромного показателя корреляции не существует способа для выяснения изолированного влияния факторов на окончательный результат показателя, следовательно, коэффициенты становятся неинтерпретируемыми.

Методы построения

Существует огромное количество методов и способов, объясняющих, каким образом можно выбрать факторы для уравнения. Однако все эти методы строятся на отборе коэффициентов с помощью показателя корреляции. Среди них выделяют:

  • Способ исключения.
  • Способ включения.
  • Пошаговый анализ регрессии.

Первый метод подразумевает отсев всех коэффициентов из совокупного набора. Второй метод включает введение множества дополнительных факторов. Ну а третий – отсев факторов, которые были ранее применены для уравнения. Каждый из этих методов имеет право на существование. У них есть свои плюсы и минусы, но они все по-своему могут решить вопрос отсева ненужных показателей. Как правило, результаты, полученные каждым отдельным методом, достаточно близки.

Методы многомерного анализа

Такие способы определения факторов базируются на рассмотрении отдельных сочетаний взаимосвязанных признаков. Они включают в себя дискриминантный анализ, распознание обликов, способ главных компонент и анализ кластеров. Кроме того, существует также факторный анализ, однако он появился вследствие развития способа компонент. Все они применяются в определенных обстоятельствах, при наличии определенных условий и факторов.


источники:

http://economics.studio/ekonometrika/chastnyie-uravneniya-regressii-31568.html

http://www.syl.ru/article/178055/new_uravnenie-regressii-uravnenie-mnojestvennoy-regressii