Частный случай тригонометрических уравнений синус

Глоссарий. Алгебра и геометрия

Тригонометрическое уравнение — уравнение, содержащее неизвестное под знаком тригонометрической функции.

Виды тригонометрических уравнений

  • Простейшие тригонометрические уравнения.
    • Уравнение sin x = a

    Если | a | > 1, то уравнение sin x = a не имеет корней. Например, уравнение sin x = 2 не имеет корней. Если | a | ≤ 1, то корни уравнения выражаются формулой x = ( —1) n arcsin a + πn, n ∈ Z. Частные случаи: 1. sin x = 0 ⇒ x = πn, n ∈ Z. 2. sin x = 1 ⇒ x = π/2 + 2πn, n ∈ Z. 3. sin x = -1 ⇒ x = -π/2 + 2πn, n ∈ Z.

    Уравнение cos x = a

    Если | a | > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos x = —1,5 не имеет корней. Если | a | ≤ 1, то корни уравнения выражаются формулой x = ±arccos a + πn, n ∈ Z. Частные случаи: 1. cos x = 0 ⇒ x = π/2 + πn, n ∈ Z. 2. cos x = 1 ⇒ x = 2πn, n ∈ Z. 3. cos x = -1 ⇒ x = π + 2πn, n ∈ Z.

    Уравнение tg x = a

    Уравнение tg x = a имеет корни при любом значении a. Корни уравнения выражаются формулой x = arctg a + πn, n ∈ Z.

    Уравнение ctg x = a

    Уравнение ctg x = a имеет корни при любом значении a. Корни уравнения выражаются формулой x = arcctg a + πn, n ∈ Z.

    Разложение на множители.

    Иррациональные тригонометрические уравнения.

    Дробно-рациональные тригонометрические уравнения.

    Введение дополнительного угла

    Этот способ используется для уравнений вида a · sin x + b · cos x = с.

    Тригонометрические уравнения — формулы, решения, примеры

    Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

    Простейшие тригонометрические уравнения

    Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

    1. Уравнение `sin x=a`.

    При `|a|>1` не имеет решений.

    При `|a| \leq 1` имеет бесконечное число решений.

    Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

    2. Уравнение `cos x=a`

    При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

    При `|a| \leq 1` имеет бесконечное множество решений.

    Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

    Частные случаи для синуса и косинуса в графиках.

    3. Уравнение `tg x=a`

    Имеет бесконечное множество решений при любых значениях `a`.

    Формула корней: `x=arctg a + \pi n, n \in Z`

    4. Уравнение `ctg x=a`

    Также имеет бесконечное множество решений при любых значениях `a`.

    Формула корней: `x=arcctg a + \pi n, n \in Z`

    Формулы корней тригонометрических уравнений в таблице

    Для синуса:Для косинуса:Для тангенса и котангенса:Формулы решения уравнений, содержащих обратные тригонометрические функции:

    Методы решения тригонометрических уравнений

    Решение любого тригонометрического уравнения состоит из двух этапов:

    • с помощью тригонометрических формул преобразовать его до простейшего;
    • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

    Рассмотрим на примерах основные методы решения.

    Алгебраический метод.

    В этом методе делается замена переменной и ее подстановка в равенство.

    Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

    Решение. Используя формулы приведения, имеем:

    `2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

    делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

    находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

    1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

    2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

    Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

    Разложение на множители.

    Пример. Решить уравнение: `sin x+cos x=1`.

    Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

    `sin x — 2sin^2 x/2=0`,

    `2sin x/2 cos x/2-2sin^2 x/2=0`,

    `2sin x/2 (cos x/2-sin x/2)=0`,

    1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
    2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

    Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

    Приведение к однородному уравнению

    Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

    `a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

    Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

    Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

    Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

    `2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

    `2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

    `sin^2 x+sin x cos x — 2 cos^2 x=0`.

    Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

    `tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

    1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
    2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

    Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

    Переход к половинному углу

    Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

    Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

    `4 tg^2 x/2 — 11 tg x/2 +6=0`

    Применив описанный выше алгебраический метод, получим:

    1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
    2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

    Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

    Введение вспомогательного угла

    В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:

    Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a>=cos \varphi`, ` \frac b> =sin \varphi`, `\frac c>=C`, тогда:

    `cos \varphi sin x + sin \varphi cos x =C`.

    Подробнее рассмотрим на следующем примере:

    Пример. Решить уравнение: `3 sin x+4 cos x=2`.

    Решение. Разделим обе части равенства на `sqrt <3^2+4^2>`, получим:

    `3/5 sin x+4/5 cos x=2/5`.

    Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

    `cos \varphi sin x+sin \varphi cos x=2/5`

    Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

    `x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

    `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

    Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

    Дробно-рациональные тригонометрические уравнения

    Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

    Пример. Решить уравнение. `\frac <1+cos x>=1-cos x`.

    Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

    Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

    Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

    1. `sin x=0`, `x=\pi n`, `n \in Z`
    2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

    Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

    Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

    Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

    Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

    Частные случаи простейших тригонометрических уравнений

    Решение простейших тригонометрических уравнений вида: sin x = a , cos x = a, tg x = a , ctg x = a, где a – произвольное число.

    Решите уравнение sin x = a, a ∈ [–1; 1].

    УравнениеРешение
    sin x = -1
    sin x = -√3/2
    sin x = -1/2
    sin x = 0
    sin x = 1/2
    sin x = √2/2
    sin x = √3/2
    sin x = 1

    Решите уравнение cos x = a, a ∈ [–1; 1].

    УравнениеРешение
    cos x = -1
    cos x = -√3/2
    cos x = -√2/2
    cos x = -1/2
    cos x = 0
    cos x = 1/2
    cos x = √2/2
    cos x = √3/2
    cos x = 1

    Решите уравнение tg x = a

    УравнениеРешение
    tg x = -√3
    tg x = -1
    tg x = -√3/3
    tg x = 0
    tg x = √3/3
    tg x = 1
    tg x = √3

    Решите уравнение сtg x = a

    УравнениеРешение
    сtg x = -√3
    сtg x = -1
    сtg x = -√3/3
    сtg x = 0
    сtg x = √3/3
    сtg x = 1
    сtg x = √3

    Все эти значения удобно находить по тригонометрическому кругу:

    Ключевые слова: синус, косинус, тангенс, котангенс, tan, cot, от икс, чему равен, минус, корень из, пи, pi, π, делить на, равно.


    источники:

    http://matemonline.com/dh/%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F/trigonometricheskie-uravnenija/

    http://ege314.ru/teoriya/chastnye-sluchai-prosteyshih-trigonometricheskih-uravneniy/