Численные методы решения нелинейных уравнений онлайн

Метод итераций

Правила ввода функции

  1. Примеры
    ≡ x^2/(1+x)
    cos 2 (2x+π) ≡ (cos(2*x+pi))^2
    ≡ x+(x-1)^(2/3)

На рис.1а, 1б в окрестности корня |φ′(x)| 1, то процесс итерации может быть расходящимся (см. рис.2).

Достаточные условия сходимости метода итерации

Процесс нахождения нулей функции методом итераций состоит из следующих этапов:

  1. Получить шаблон с омощью этого сервиса.
  2. Уточнить интервалы в ячейках B2 , B3 .
  3. Копировать строки итераций до требуемой точности (столбец D ).

Примечание: столбец A — номер итерации, столбец B — корень уравнения X , столбец C — значение функции F(X) , столбец D — точность eps .

Нелинейные уравнения

Уравнение вида f (x) = 0, где f (x) — некая нелинейная функция, называется нелинейным. Виды таких уравнений: алгебраические, где функция алгебраическая, и трансцендентные, в которых функция может быть тригонометрическая, показательная и т.д.

При решении нелинейных уравнений используются прямые (точные) и итерационные (численные) методы. Решить точным методом — значит, представить решение в виде формулы, по которой находят корни уравнения. Для уравнений выше 4-й степени невозможно написать аналитическое решение.
Бывает, что в уравнении присутствуют приближенные коэффициенты. В этом случае для решения уравнения применяют итерационные методы, где заранее задается точность. Решение уравнения такими методами предполагает нахождение корней (или их отсутствие) и определение их значения с заданной точностью.

Решение нелинейных уравнений

Корнем уравнения f (x) = 0 является такое значение с, при котором f© = 0.
Уравнение f (x) = 0 имеет одно решение на отрезке |а;b| при условии, что функция f (x):
— непрерывна и монотонна на данном отрезке;
— значения функции на концах отрезка с разными знаками, т.е. f (а)• f (b) меньше 0.

Вычисление корня уравнения f (x) = 0 путем использования численных методов:
— устанавливаем знаки функции в предельных точках области ее существования
х = а, х = b;
— определяем приближенное значение корня или промежутка, в котором он находится;
— уточняем приближенное значение до определенной точности.

Данный калькулятор станет для вас надежным помощником при решении нелинейных уравнений онлайн. Вам потребуется лишь ввести исходные данные в окна калькулятора.

Метод Ньютона онлайн

Данный онлайн калькулятор находит корень уравнения приближённо. В основе алгоритма его работы лежит метод Ньютона. Чтобы начать работу, необходимо ввести исходные данные своей задачи.

Методом Ньютона, найти корень (

максимальное кол-во итераций:

критерий останова вычислений:

Метод Ньютона является численным, т.е. корень уравнения находится приближенно. При этом можно заранее задать точность его нахождения.

Пусть нам дано уравнение

Формула для поиска корня уравнения выглядит следующим образом:

и — приближённые значения корня уравнения на -ой и ( )-ой итерациях соответственно, — значение функции в точке , — значение производной функции в точке .

Как видно, для того чтобы начать работу необходимо задать точку — начальное приближение для корня уравнения . От выбора точки зависит сойдётся ли алгоритм к решению или нет. Сходимость метода квадратичная, но она резко ухудшается если мы ищем кратный корень уравнения, т.е. если и одновременно , где — кратный корень уравнения .

Вычисления по приведённой выше формуле можно продолжать до бесконечности, соответственно на практике необходим некоторый критерий, который будет определять нужно ли нам продолжать вычисления или нет. Как правило, используется критерий останова вычислений на основе приращения или же на основе близости функции к нулю в некоторой точке .

Критерий останова вычислений на основе приращения задаётся следующей формулой:

т.е. различие (по модулю) между двумя последовательными приближениями к корню уравнения ( и ) должны быть меньше, некоторой наперёд заданной величины .

Критерий останова вычислений на основе близости функции к нулю определяется следующей формулой:

т.е. отличие (по модулю) между функцией в некоторой точке и нулём меньше .

В тоже время, если последовательность к корню не сходится, то критерии останова не сработают и процесс поиска корня будет продолжаться бесконечно. Чтобы предотвратить такую ситуацию, на практике вычисления прекращают после некоторого, заданного количества итераций.

На рисунке ниже приведена геометрическая интерпретация процесса поиска корня уравнения методом Ньютона.

В точке мы строим касательную к графику функции . Уравнение касательной в этой точке имеет вид:

Находим точку пересечения полученной касательной с осью абсцисс, т.е. рассматриваем точку с координатами . Подставляя координаты указанной точки в уравнение касательной, получаем следующее соотношение:

Из данного уравнения находим :

Продолжая данный процесс, получим формулу метода Ньютона, приведенную выше. Из-за того, что на каждой итерации фактически происходит построение касательной, метод Ньютона также иногда называют методом касательных.

Другие полезные разделы:

Оставить свой комментарий:

Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме


источники:

http://infofaq.ru/nelinejnye-uravneniya.html

http://mathforyou.net/online/numerical/newton/