Что делать если ты не понимаешь уравнение

Как решить любую задачу? Часть 1. Алгебра

Обучение математике в школе построено по принципу «повторяй за мной». Учитель дает какой-то метод решения или некий алгоритм, а ученики с помощью этого метода решают задачи. Это похоже на то, как мастер обучает подмастерье. Мастер показывает инструменты и объясняет, что с их помощью можно делать — вот пила, ей отпиливают дерево. А вот рубанок – он нужен для того, чтобы придать отпиленному куску определенную форму. И использовав эти и другие инструменты можно сделать, например, табуретку. Так же в школе: для решения квадратных уравнений удобно пользоваться дискриминантом и теоремой Виета, для рациональных неравенства – хорошо подходит метод интервалов и т.д.

Это, конечно, достаточно эффективный способ обучения, но для того, чтобы набирать на ЕГЭ 80+ баллов этих навыков не хватит. Нужно нечто большое – нужно уметь понять, как решается задача, даже если не видел ничего аналогичного раньше. Это как по совершенно новому для тебя предмету догадаться какие инструменты нужно применить — «сделайте стол, столы вы еще не делали, но делали стулья».

Придумывать новое решение самостоятельно – это тоже навык, который надо развивать. Нужно привыкнуть не бояться нового, уметь задавать себе правильные вопросы и лояльно относиться к своим ошибкам. В этой статье я написала, что помогает лично мне и моим ученикам решать новые задачи.

Предупреждаю: это всё работает только если вы знаете необходимую теорию. То есть уметь отличать рубанок от ножовки всё-таки надо. 🙂

5 принципов которые помогут решить задачу:

Не знаешь, что делать – делай, что можешь. Некоторые преподаватели это правило еще формулируют так: «давайте что-нибудь сделаем, а потом подумаем». Новая задача потому и новая, что приступая к решению, ты понятия не имеешь как ее решать. Но почти всегда можно что-то записать по-другому, как-либо преобразовать, изменить. Попробуй, вдруг это верный шаг? Зачастую ученики даже не пытаются делать так, потому что не видят ответа на вопрос: «ну сделаю, а что дальше?». В этом смысле они похожи на водителей, которые ждут пока зеленый сигнал светофора загорится сразу вдоль всего маршрута — действительно, зачем ехать, ведь вон там впереди горит красный! Правильный подход тут, конечно же, иной – пока будешь ехать, сигнал, возможно, уже смениться на зеленый. Или нет. И тогда тебе поможет следующий принцип:

Не бойся «тупиков» — просто начинай решение заново, главное не сдаваться. Нет ничего плохого в том, чтоб решая задачу, пойти не тем путем даже десяток раз. Школьные учебники как-то незаметно приучают нас к тому, что решение должно быть прямое и четкое – «раз, два, три!», ведь в них оно записано именно так. А «муки поиска» решения всегда остаются за скобками, выбрасываются как лишнее, чтоб не захламлять суть. Вот и получается ситуация как на картинке.

Поэтому знай, что…

Задача не обязана решаться с «полпинка». И чем сложнее задача, тем больше тупиков ты обойдешь перед решением. И это хорошо! Главное помни: «прогулки по тупикам» — не пустая трата времени и не потери! Как раз наоборот — в такие моменты ты развиваешь мозги сильнее всего. Когда ты ищешь новое решение, у тебя прямо в этот момент формируются в мозгу новые нейронные связи, и ты в буквальном смысле становишься умнее. Более того, вот этот поиск неведомого решения — на самом деле и есть настоящая математика! Да-да, для кого-то это будет новостью, но математика это не когда ты быстренько подставляешь «цифирьки в формулки» и тут же считаешь ответы, решая задачи по аналогии, а когда ты долго-долго перебираешь разные методы решений, пробуешь применить различные идеи, крутишь задачу так и сяк, и в какой-то момент тебя озаряет, и ты находишь путь, ведущий к ответу. А в поиске этих озарений тебе поможет принцип…

Случайности не случайны. Если ты заметил какое-то совпадение, то, возможно, это не совпадение, а вполне себе ключ к решению. Все переменные стоят внутри одинаковых выражений? У логарифмов совпадают основания? Или все знаменатели дробей являются квадратами друг друга? Подумай — как это можно использовать? Подробнее об этом поговорим ниже.

Если закрыта одна дверь, открыта другая. Не циклись на одной мысли. Возможно, к решению можно подойти вообще с другой стороны. Но перед тем как зачеркивать очередную попытку решения – внимательно проверь, может быть ты просто сделал в нем какую-то простенькую ошибку и поэтому не получается дорешать до конца?

8 вопросов, которые помогут решить почти любое задание в алгебре

Решая задачу, мы ищем ответ на вопрос задания – нужное значение переменной, интервал решений или еще что-то в этом роде. И чтобы прийти к ответу на этот главный вопрос нужно уметь задавать себе промежуточные, опорные вопросы, которые могут натолкнуть на правильный путь рассуждений. Вот эти вопросы:

1. Что передо мной (уравнение, неравенство, выражение)? Как обычно решается такой тип задач?

— Что передо мной?
— Квадратное неравенство.

— Как решаются квадратные неравенства?
— Методом интервалов.


\(x∈[-10;10]\)

Пример 2: Решите уравнение \(\cos⁡\) \(\frac<π(x-7)><3>\) \(=\) \(\frac<1><2>\)
— Что передо мной?
— Простейшее тригонометрическое уравнение.


\(\frac<π(x-7)><3>\) \(=±\) \(\frac<π><3>\) \(+2πn,n∈Z\)

— А теперь что передо мной?
— Хм… Выглядит странно, но похоже на линейное уравнение, так как тут только одна переменная (\(x\)) и она в первой степени.

— Как решаются линейные уравнения?
— Нужно избавиться от знаменателей, раскрыть все скобки и перенести известные вправо, а неизвестные влево, в общем, привести уравнение к виду \(x=[число]\).

2. Решал ли я похожие задачи? Как я их решал?

— Что передо мной?
— Тригонометрическое уравнение (не простейшее).

— Как обычно решаются тригонометрические уравнения?
— Уравнение преобразовывается с помощью формул, пока невозможно будет сделать замену. Очевидно, что тут сразу можно сделать замену.

Получилось кубическое уравнение.

— Решал ли я похожие задачи? Как я их решал?
— Обычно кубические уравнения я решал либо методом группировки, либо делением многочлена на многочлен.

3. Какие формулы я вижу / какие формулы можно применить? Что надо сделать, чтоб их можно было применить?

— Какие формулы я тут вижу?
— Полностью – никаких. Но вот такое же произведение синус на косинус есть в формуле двойного угла синуса:

4. Какие «неслучайности» я вижу? Как их можно использовать?

— Какие «неслучайности» я вижу?
— Очевидно, что выражения \((4x-8)\) и \((x-8)\) с той и другой стороны – это неспроста.

— Как их можно использовать?
— Поделить на эти выражения нельзя. Можно попробовать перенести то, что стоит справа в левую часть.

Теперь можно одинаковые выражения вынести за скобку.

— Какие «не случайности» можно заметить?
— И \(9\), и \(27\) являются степенями тройки: \(3^2=9\), \(3^3=27\).

— Как это можно использовать?
— Можно заменить \(9\) на \(3^2\), а \(27\) на\( 3^3\), вот так:

А теперь можно применить свойство степеней: \((a^n)^m=a^\), \(\frac\) \( =a^\).

5. Что я в принципе могу сделать? Какие преобразования допустимы/возможны?

— Что можно сделать с этим выражением?
— Можно вынести множители из-под знака корня.

— Какие еще преобразования здесь возможны?
— Можно вынести за скобки \(4\sqrt<2>\).

— Что еще можно сделать?
— Применить формулу двойного угла \(\cos⁡2α=1-2\sin^2⁡α \)

6. Что мне мешает? Как можно сделать выражение/уравнение/неравенство проще? Как мне было бы удобнее? Что я могу сделать, чтоб стало удобнее?

— Как можно сделать уравнение сильно проще?
— Если избавиться от корня, то уравнение станет проще.

— Как можно избавиться от корня?
— Можно возвести обе части уравнения в квадрат.

— Как можно упростить уравнение?
— Можно избавиться от знаменателя.

— Как обычно избавляются от знаменателя?
— Умножением обеих частей уравнения на наименьший общий знаменатель.

— Как было бы удобнее?
— Было бы удобнее, чтоб аргументы у логарифмов были одинаковые.

— Что надо сделать, чтоб аргументы у логарифмов были одинаковые?
— Вынести квадрат вперед и каким-то образом перевернуть дробь.

— Как можно перевернуть дробь?
— Можно использовать степень \(-1\).

— Что можно сделать теперь?
— Логарифмы полностью одинаковые значит можно либо сделать замену, либо вынести их за скобку.

7. Чего от меня хочет задача? Когда будет выполняться условие задачи?

Допустим, вы никогда не сталкивались с дробными неравенствами или забыли, как их решать. Давай просто порассуждаем.

— Чего от меня хочет задача?
— Чтоб левая часть была положительна.

— А в каком случае дробь (не именно эта, а вообще любая) будет больше нуля? Короче говоря, когда мы делением получим знак плюс?
— Когда будем делить положительное на положительное, либо отрицательное на отрицательное. Иными словами — числитель и знаменатель должны иметь одинаковый знак (и при этом знаменатель не равен нулю).

— А когда будет положителен числитель?
— Когда икс больше трех. Если же икс меньше трех, то числитель будет иметь знак минус.

— Тот же вопрос про знаменатель?
— Знаменатель положителен при иксе большем \(1\), и отрицателен при иксе меньше \(1\).

— Так когда же будет выполняться условие задачи?
— При иксе большем \(3\) (там в дроби и сверху и снизу плюс) и при иксе меньше \(1\) (в этом случае и числитель, и знаменатель имеют знак минус).

Всё, неравенство решено. Заметим, что рассказанное выше — это логическая «начинка» метода интервалов. Помните такой? «Приравняйте к нулю, найдите корни нанесите их на числовую ось, расставьте знаки…» Вот он.

— Чего от меня хочет задача?
— Чтоб я нашел такие иксы, при которых слева – ноль.

— А что у нас стоит слева?
— Сумма двух квадратов.

— В каком случае сумма квадратов будет равняться нулю?
— Хм… Квадрат не может быть отрицательным, он всегда больше либо равен нуля. А мы складываем два таких выражения. Значит, нам нужны такие иксы, при которых оба квадрата ОДНОВРЕМЕННО обратятся в ноль, потому что в остальных случаях сумма будет больше нуля.

8. Могу ли я сделать какую-нибудь замену?

— (вспоминаем предыдущие пункты) Какие неслучайности я вижу?
— В скобке вторая дробь – это перевернутая первая.

— Как это можно использовать?
— Ну…

— Могу ли я сделать какую-либо замену?
— Да, можно заменить \(\frac<2>\) на \(t\). Тогда вторая дробь будет \(\frac<1>\) .

— Какие преобразования тут возможны в принципе?
— О! Можно перенести всё влево и разложить на множители по формуле разности квадратов!

— Что можно теперь сделать?
— Можно привести выражения в скобках к общему знаменателю.

Итого: приучайтесь рассуждать в математике. Не мыслите шаблонами, а ищите путь. И написанные выше вопросы вам в этом помогут. Успешных решений!

Что делать, если вы совсем не понимаете математику

Вопросом, зачем учить математику и как ее понять, часто задаются ребята, которым этот предмет, мягко говоря, не дается. Но, увы, ОГЭ и ЕГЭ по математике все равно придется сдавать, независимо, понимаете ли вы ее или нет.

Зачем нужна математика?

Если вы решили стать, например, журналистом или политологом, то умение вычислять интеграл или находить дискриминант действительно вряд ли вам пригодятся. Но системное мышление, которое развивает математика, поможет вам в работе. Занимаясь математикой, вы научитесь логически мыслить, работать одновременно с большим количеством фактического материала, создавать и обосновывать концепции, излагать и доказывать свою точку зрения.

Как понять математику? Она, как и любой язык, является знаковой системой. Вы не сможете говорить на иностранном языке, просто выучив словарь, но не умея пользоваться правилами грамматики. Простая зубрежка не даст желаемого результата. Математику нужно научиться понимать. С первого класса этот предмет дается по принципу «от простого к сложному». Если что-то упущено в начальной школе, в старших классах «быстренько» наверстать материал не получится.

Что же делать?

Большинство родителей, если ребенок получает по математике сплошные двойки да тройку, ищут репетитора или подготовительные курсы. Примерно в 80% случаев систематические дополнительные занятия и смена преподавателя (пусть даже временная) помогают решить проблему. Значит, здесь причина низкой успеваемости связана с тем, что школьнику сложно успевать за остальным классом или он стесняется задать вопрос, если что-то неясно, боится учителя, есть пробелы.

Но как поступить, если ребенок изо всех сил старается понять математику, но у него ничего не получается? И тут, как правило, начинаются отговорки:

  • «Нет способностей к математике».
  • «Он чистый гуманитарий».
  • «Она же девочка, зачем ей математика?».
  • «Математика слишком трудный предмет».
  • «Спасибо, Марь Иванна, нам очень пригодились в жизни интегралы».

Увы, проблемы они никак не решают, а наоборот усугубляют. Математика является обязательным экзаменом в 9 и 11 классах, и терять время на подобные оправдания просто неразумно.

Дело не в способностях, дело в голове

По мнению детских психологов, дети, не успевающие по математике схожи в одном: они настолько боятся сделать ошибку, что этот страх мешает собраться и решить задачу правильно. Корни, как всегда, таятся в начальной школе.

  • Неразвитое абстрактное мышление.
  • Плохие навыки чтения.
  • Стеснительность.
  • Страх получить плохую оценку.

Вместе эти факторы мешают малышу вникнуть в правило и условия задачи и в результате приводят к неудаче, боязни и непониманию предмета. Ребенку кажется, что он непроходимо туп в плане математики, это чувство подкрепляется неодобрительными высказываниями родителей и учителей в разных формах – от «Ты какой-то умственно отсталый» до «У тебя мозги гуманитария». Безобидный школьный предмет становится бесконечным источником унижения, страха, негативных эмоций.

Можно ли исправить ситуацию?

Психологи рекомендуют действовать одновременно в нескольких направлениях.

  • Во-первых, необходимо найти преподавателя, увлеченного своим предметом и уважительно относящегося к детям, который сможет показать, что математика – это не скучный набор чисел и непонятных правил, а язык, на котором говорит вся Вселенная, имеющий свою эстетику и философию.
  • Во-вторых, детям-гуманитариям необходимо прослеживать во всех своих действиях смысл. Как только они научатся видеть математику в окружающем мире, применять ее законы к привычным вещам, они начнут делать успехи и в «ненавистном» предмете.
  • В-третьих, нельзя унижать ребенка и говорить, что он чего-то не может. Если что-то не получается, необходимо делать попытки, пока не получится, используя разные пути решения. Чувство удовлетворения от того, что он сам справился с трудной задачей или примером, даст ему уверенность в своих силах, появится желание испытать ее снова.
  • В-четвертых, необходимо восполнить пробелы в знаниях. Как это сделать? Записать школьника на подготовительные курсы, чем раньше, тем лучше, например, за 1,5 – 2 года до ГИА или ЕГЭ. Большой объем материала невозможно проработать и усвоить за несколько месяцев.

Поговорки «Не так страшен черт, как его малюют» и «У страха глаза велики» применимы к математике. Это «чудовище» вполне можно приручить.

Почему нужно сразу нацеливаться на профильную математику?

Хорошие баллы по математике требуются при поступлении на некоторые гуманитарные специальности, особенно, если они связаны с экономикой, маркетингом, управлением. Бывает, что этот предмет сдают и будущие лингвисты. Все зависит от вуза и его профиля. Только вот то, что засчитывается результат только за профильную математику, указывается не везде.

Выбрав профильную математику,

  • вы значительно повышаете свои шансы на бюджет;
  • сможете подать документы в большее число вузов;
  • вы начнете лучше понимать другие предметы, особенно языки.

И, конечно, сможете достойно отвечать на глупые шутки про гуманитариев и «один, два, три, а дальше – много».

С другой стороны, если до ЕГЭ остался год, а по математике у вас двойки, то разумнее выбрать базовый уровень и начать готовиться к нему. Да, выбор специальностей будет несколько ограничен для вас, но зато вы точно сдадите экзамен и получите аттестат.

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.


источники:

http://ege-merlin.ru/chto_delat,_esli_vyi_sovsem_ne_ponimaete_matematiku.html

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij