Что можно описать математическими уравнениями

Физическая и математическая реальности

Эта статья является второй частью конспекта книги «Наша математическая вселенная. В поисках фундаментальной природы реальности» (автор Макс Тегмарк).

Невероятная эффективность математики в естественных науках есть нечто граничащее с мистикой, ибо никакого рационального объяснения этому факту нет.

Идея, что Вселенная в некотором смысле является математической, восходит по меньшей мере к пифагорейцам и породила многовековую дискуссию физиков и философов. Галилей утверждал, что Вселенная – это «величественная книга», написанная на языке математики. Лауреат Нобелевской премии по физике Юджин Вигнер в 60-х годах XX века настаивал, что «невероятная эффективность математики в естественных науках» нуждается в объяснении.

Если оглядеться. Где вся эта математика, которой мы собираемся заниматься? Разве математика – это не наука о числах? Вероятно, вам на глаза попадется несколько чисел, например, время на часах, но это лишь символы, изобретенные и изображенные людьми, так что вряд ли они отражают математическую сущность Вселенной в каком-либо глубоком смысле.

Галилей говорит о геометрических фигурах вроде окружностей и треугольников как о математических. Видите ли, вы вокруг себя геометрические узоры или фигуры? (Дизайн предметов в виде различных форм не в счет.) Но попробуйте бросить камешек и посмотрите, какую красивую форму придает природа его траектории. Галилей сделал открытие: траектория любых предметов имеет одинаковую форму, называемую перевернутой параболой. Более того, форму этой параболы можно описать простым уравнением: x = y 2 , где x – горизонтальное положение, y – вертикальное положение. В зависимости от начальной скорости и направления эта форма может растягиваться и по вертикали, и по горизонтали, однако она всегда остается параболой.

Когда мы наблюдаем, как объекты движутся по орбитам в космосе, мы открываем другую повторяющуюся форму – эллипс. А эллипс – это просто растянутая окружность. В зависимости от начальной скорости, направления движущегося по орбите объекта и массы, вокруг которой он движется, форма этой орбиты может оказываться растянутой или наклоненной, однако всегда остается эллипсом.

Постепенно люди открыли в природе множество других повторяющихся форм и паттернов, охватывающих не только движение и гравитацию, но и такие разные области, как электричество, магнетизм, свет, теплота, химия, радиоактивность и субатомные частицы. Эти паттерны складываются в законы физики. Как и форму эллипса, эти законы можно описать, применяя математические уравнения (рис. 1).

Рис. 1.

Уравнения – не единственный скрытый в природе намек на математику: есть также числа. Тегмарк имеет ввиду не о творениях рук человеческих, вроде пагинации в книге, а о числах, которые выражают фундаментальные свойства нашей физической реальности. Сколько карандашей вы сможете расположить так, чтобы все они были перпендикулярны (под углом 90°) друг другу? Три. Откуда взялось число 3? Мы называем его размерностью пространства, но почему существует именно 3 измерения, а не 2, 4 или 42? Почему в нашей Вселенной существует (насколько ученные могут судить) ровно шесть типов кварков? Есть много других «встроенных» в природу целых чисел, которые описывают, какого типа элементарные частицы существуют. Также существуют закодированные в природе величины, которые не являются целыми числами и требуют для записи дробных значений.

Относится ли к ним число, которое появляется на индикаторе весов, когда вы встаете на них? Нет, поскольку является мерой чего-либо (вашей массы), что день ото дня изменяется, а значит, не является фундаментальным свойством нашей Вселенной. Что можно сказать о массе протона (1,672622 × 10 –27 кг) или о массе электрона (9,109382 × 10 –31 кг), которые кажутся неизменными во времени? Они также не в счет, поскольку измеряются в килограммах, а это произвольная единица массы, придуманная людьми. Но если вы разделите одно из этих двух чисел на другое, получится нечто поистине фундаментальное: протон примерно в 1836,15267 раз массивнее электрона. Значение 1836,15267 – безразмерное число, подобное π или √2, в том смысле, что его значение не зависит ни от каких человеческих единиц измерения, вроде граммов, метров, секунд или вольт. Почему это значение так близко к 1836? Почему не 2013? Простой ответ состоит в том, что ученые этого не знают.

В нашей Вселенной есть нечто сугубо математическое, и чем пристальнее мы всматриваемся, тем, похоже, больше математики видим. Что касается природных констант, то имеются сотни тысяч безразмерных чисел, измеренных в разных областях физики: от отношения масс элементарных частиц до отношений характерных длин волн света, испускаемого различными молекулами. С помощью компьютеров, достаточно мощных, чтобы решать уравнения, описывающие законы природы, все до одного эти числа могут быть определены. Некоторые вычисления и измерения крайне сложны, и их до сих пор не удалось выполнить, а когда удастся, то, возможно, числа в теории и эксперименте не совпадут. Такого рода расхождения не раз случались в прошлом и, как правило, разрешались одним из трех способов:

Кто-нибудь находил ошибку в эксперименте.

Кто-нибудь находил ошибку в вычислениях.

Кто-нибудь находил ошибку в наших законах физики.

В последнем случае обычно удавалось найти более фундаментальные законы физики – как тогда, когда замена ньютоновских уравнений для гравитации эйнштейновскими позволила объяснить, почему Меркурий обращается вокруг Солнца не по идеальному эллипсу. Во всех случаях ощущение, что в природе есть нечто математическое, лишь усиливалось.

Дополнительные улики

Что делать со всеми этими намеками на присутствие математики в нашем физическом мире? Большинство физиков привыкло, что природа по некоей причине описывается математикой, по крайней мере приближенно, и признают это как факт.

Почему математика так успешно описывает природу? Как говорил Вигнер: это требует объяснения. Мы постоянно сталкиваемся с уликами, указывающими на то, что математика не просто описывает природу. В некоторых отношениях природа является математической:

Сама ткань нашего физического мира, его пространство, является чисто математическим объектом в том смысле, что все неотъемлемые свойства пространства – число измерений, кривизна и топология – являются математическими.

«Начинка» нашего физического мира состоит из элементарных частиц, которые, в свою очередь, являются чисто математическими объектами в том смысле, что все их неотъемлемые свойства (например, заряд, спин) являются математическими.

Существует нечто, возможно, даже более фундаментальное, чем наше трехмерное пространство с частицами в нем – это волновая функция и бесконечномерное гильбертово пространство, в котором она обитает. Частицы могут создаваться и уничтожаться, а также находиться в нескольких местах одновременно, однако была и всегда будет лишь одна волновая функция, движущаяся по гильбертову пространству в соответствии с уравнением Шредингера. И волновая функция, и гильбертово пространство являются чисто математическими объектами.

Гипотеза математической Вселенной

Однажды вечером в 1990 году Тегмарку пришло в голову, что наша реальность непросто описывается математикой, но и является математикой в очень специфическом смысле. Не какие-то ее аспекты, а вся целиком, включая нас самих.

Прежде чем погружаться в детали, вот логическая структура, к которой он прибегает, размышляя об этом. Во-первых, есть две гипотезы. Первая, гипотеза внешней реальности (ГВР), кажется безобидной: Существует внешняя физическая реальность, совершенно независимая от людей. Вторая, гипотеза математической Вселенной (ГМВ), выглядит куда радикальнее: Наша внешняя физическая реальность является математической структурой.

Во-вторых, у Тегмарка есть доказательство того, что при достаточно широком определении математической структуры из первой гипотезы вытекает вторая.

Первое допущение, гипотеза внешней реальности, не вызывает серьезных споров: большинство физиков согласно с этой старой идеей. В предположении, что внешняя реальность существует, цель физических теорий состоит в описании того, как она устроена. Наиболее успешные теории, например, общая теория относительности и квантовая механика, описывают лишь часть этой реальности: гравитацию или, скажем, поведение субатомных частиц. Но Святой Грааль теоретической физики – это «теория всего», исчерпывающее описание реальности.

Уменьшение нормы разрешенного багажа

Если мы признаем, что реальность существует независимо от людей, то чтобы ее описание было полным, оно должно также быть корректно определенным для нечеловеческих существ – скажем, инопланетян или суперкомпьютеров, – которые не знакомы с человеческими понятиями. Иначе говоря, такое описание должно выражаться в форме, лишенной всякого человеческого «багажа» вроде понятий «частица», «наблюдение» и других слов естественного языка.

При этом все физические теории содержат две компоненты: математические уравнения и «багаж» – слова, объясняющие, как эти уравнения связаны с тем, что мы наблюдаем и интуитивно понимаем. Выводя из теории следствия, мы придумываем для них новые понятия и слова, например, атомы, молекулы, звезды, поскольку ими удобно пользоваться. Важно помнить, однако, что эти понятия придуманы людьми. В принципе, все может быть вычислено без «багажа». Гипотетический идеальный суперкомпьютер способен вычислить, как состояние Вселенной изменяется во времени, без «человеческой» интерпретации, просто рассчитывая, как будут двигаться все частицы или как будет изменяться волновая функция.

Другой замечательный факт: нередко можно математически предсказать существование заслуживающих имени сущностей, опираясь на уравнения, управляющие их частями. На этом пути можно предсказать всю «легоподобную» иерархию структур, от элементарных частиц до атомов с молекулами, а также все объекты на каждом уровне, которым люди дали запоминающиеся имена. Например, если вы решаете уравнение Шредингера для пяти или менее кварков, то оказывается, что есть лишь два способа, которыми они могут быть достаточно стабильно организованы: либо как сгустки из двух верхних кварков и одного нижнего, либо как сгустки из двух нижних кварков и одного верхнего. Люди ради удобства добавили в свой «багаж» названия для сгустков этих двух типов: протоны и нейтроны.

Тегмарк рассматривает такие составные объекты как эмерджентные в том смысле, что они возникают как решения уравнений, описывающих более фундаментальные объекты. Их эмерджентность – трудноуловимое свойство, поскольку исторически научный прогресс по большей части шел в противоположном направлении. Так, люди узнали о звездах прежде, чем поняли, что они состоят из атомов; узнали об атомах прежде, чем поняли, что они состоят из электронов, протонов и нейтронов и так далее. Для каждого эмерджентного объекта, который для нас важен, люди собрали «багаж» в форме новых понятий.

Того же характера эмерджентность и накопление человеческого «багажа» видны на рис. 2. На рисунке приведена грубая схема организации научных теорий в генеалогическое древо, в котором каждая теория может быть выведена из более фундаментальных. Все эти теории имеют две составляющие: математические уравнения, а также слова, которые объясняют, как уравнения связаны с тем, что мы наблюдаем. На каждом уровне иерархии теорий вводятся новые понятия, потому что они удобны и охватывают суть того, что происходит, без обращения к вышестоящей, более фундаментальной теории. Все эти понятия вводят люди: в принципе, все может быть выведено из фундаментальной теории на вершине древа, хотя такой крайний редукционизм на практике обычно бесполезен. Грубо говоря, по мере движения вниз по древу количество слов увеличивается, а уравнений – уменьшается, едва не достигая нуля в таких предельно прикладных сферах, как медицина или социология. Напротив, теории, близкие к вершине, сильно математизированы, и физики с трудом описывают понятия в доступном обывателю виде, если это вообще возможно.

Рис. 2.

Чего-то недостает: нет целостной теории, объединяющей гравитацию и квантовую механику. ТВ («теория всего») стала бы полным описанием внешней физической реальности, существование которой предполагается в гипотезе внешней реальности. Полное описание должно быть свободно от любого «багажа», то есть не должно содержать никаких понятий. Иными словами, оно должно быть чисто математической теорией без объяснений или «постулатов». Так что бесконечно разумный математик должен быть способен вывести все древо теорий (рис. 2) лишь из этих уравнений, извлекая из них свойства физической реальности, которую они описывают, свойства ее обитателей, их восприятие мира и даже слова, которые они придумывают. Все это неуклонно ведет к вопросу: действительно ли можно найти такое описание внешней реальности, в котором не было бы никакого «багажа»?

Современная математика – это формальное исследование структур, которые можно определить чисто абстрактным способом, без человеческого «багажа». Считайте математические символы просто метками без внутреннего содержания. Обозначения, используемые для указания сущностей и их взаимосвязей, не имеют значения; целые числа обладают лишь теми свойствами, которые связывают их между собой. То есть мы не изобретаем математические структуры: мы открываем их, а изобретаем лишь обозначения для их описания.

Итак, два основных вывода:

Из гипотезы внешней реальности вытекает, что «теория всего» (полное описание нашей внешней физической реальности) не содержит «багажа».

Нечто, имеющее описание, совершенно свободное от «багажа», – это не что иное, как математическая структура.

Из этих тезисов вытекает гипотеза математической Вселенной, то есть утверждение о том, что внешняя физическая реальность, описываемая посредством «теории всего», является математической структурой. Если вы верите во внешнюю реальность, независимую от людей, то вы должны поверить и в то, что наша физическая реальность является математической структурой. Иными словами, мы живем в гигантском математическом объекте – вероятно гораздо более сложном, чем объекты с пугающими названиями вроде многообразий Калаби–Яу, тензорных расслоений или гильбертовых пространств, которые появляются в передовых современных физических теориях. Все в нашем мире чисто математическое – включая нас самих.

«Багаж» и эквивалентные описания

Итак, люди пополняют свои описания «багажом». Теперь взглянем с другой стороны: как математическая абстракция может избавлять от «багажа», «обнажая» вещи до самой их сути.

Абстрактная партия в шахматы не зависит от цвета или формы фигур, от того, описываются ли ходы движениями фигур на физически существующей доске, на стилизованном компьютерном изображении или с применением алгебраической шахматной нотации – это все равно та же партия. Аналогично математическая структура не зависит от символов, которые используются для ее описания (рис. 3).

Рис. 3.

Рассмотрим подробнее, как мы описываем абстрактные сущности. Прежде всего описание должно быть конкретным, так что нужно изобрести объекты, слова, символы, соответствующие абстрактной идее. Так, в США шахматную фигуру, которая ходит по диагонали, называют bishop («епископ»). Во-вторых, очевидно, что это название произвольно и другие были бы ничуть не хуже. В самом деле, эта фигура называется fou («дурак») по-французски, strelec («стрелок») по-словацки, löpare («бегун») по-шведски, fil («слон») по-персидски.

Любые слова, понятия или символы, которые появляются в некоторых, но не во всех эквивалентных описаниях, очевидно, являются необязательными, а значит, относятся к «багажу». Но если мы хотим определить сущность шахматной партии, сколько «багажа» мы можем выбросить? Очевидно, много: компьютеры способны играть в шахматы, не имея никакого представления о человеческом языке или понятиях вроде цвета, текстуры, размеров и названий фигур. Чтобы до конца понять, как далеко мы можем зайти, необходимо дать строгое определение эквивалентности: Два описания эквивалентны, если между ними существует соответствие, которое сохраняет все отношения.

В шахматах используются абстрактные сущности (фигуры и поля на доске) и отношения между ними. Одно из отношений, которое фигура может иметь с полем, заключается в том, что первая стоит на втором. Другое отношение, которое фигура может иметь к полю, состоит в том, что ей позволено на него переместиться. Две центральные иллюстрации на рис. 3, согласно нашему определению, эквивалентны: между трехмерными и двумерными фигурами и досками существует соответствие, так что любой трехмерной фигуре, стоящей на определенном поле, соответствует двумерная фигура на соответствующем поле.

Когда в шахматы играют компьютеры, они обычно пользуются иными абстрактными описаниями позиций, представляющими собой схемы из нулей и единиц в памяти. Так что остается после того, как мы избавляемся от «багажа»? Что именно описывается эквивалентными описаниями? Шахматная партия, на 100 % очищенная.

«Багаж» и математические структуры

Разобранный случай с абстрактными шахматными фигурами, полями на доске и отношениями между ними – это пример гораздо более общего понятия – математической структуры. Математическая структура – это набор абстрактных сущностей с отношениями между ними.

Рис. 4.

На рис. 4 (слева) описываются математические структуры с четырьмя сущностями, связанными между собой отношением нравится. Сущность Филипп представлена изображением с множеством внутренних свойств, таких, например, как цвет волос. Напротив, сущности математических структур совершенно абстрактны, что предполагает отсутствие у них каких бы то ни было внутренних свойств.

Рассмотрим более строгое описание, представленное на среднем рисунке. Оно эквивалентно первому, поскольку, если установить соответствие согласно следующему словарю: Филипп = 1, Александр = 2, лыжи = 3, скейтборд = 4, нравится = R, все отношения сохранятся.

В правой части рис. 4 представлено третье эквивалентное описание нашей математической структуры с помощью числовой таблицы четыре на четыре. В таблице значение 1 указывает, что отношение (нравится) имеет место между элементом, соответствующим данной строке, и элементом, соответствующим данному столбцу. Скажем, тот факт, что в третьей колонке первой строки стоит 1, означает, что «Филиппу нравятся лыжи».

По итогу есть лишь одна уникальная математическая структура, которая описывается всеми этими способами. Итак, любое конкретное описание математической структуры несет «багаж», но сама структура его не содержит. Важно не путать описание с тем, что именно описывается: даже кажущееся наиболее абстрактным описание математической структуры не является самой этой структурой. Правильнее сказать, что структуре соответствует класс всех эквивалентных ее описаний. В табл. 1 дана сводка отношений между ключевыми понятиями, связанными с идеей математической Вселенной.

Шпаргалка по математической Вселенной

Понятия и слова, придуманные людьми для удобства, которые не являются необходимыми для описания внешней физической реальности.

Набор абстрактных сущностей с отношениями между ними. Может быть описана независимым от «багажа» способом.

Два описания математической структуры эквивалентны, если между ними существует соответствие, которое сохраняет все отношения. Если две математические структуры имеют эквивалентные описания, то это одна и та же структура.

Свойство, остающееся неизменным при преобразовании. Например, идеальная сфера не изменяется при повороте.

Гипотеза внешней реальности

Существует внешняя физическая реальность, полностью независимая от людей.

Гипотеза математической Вселенной

Внешняя физическая реальность является математической структурой. Тегмарк доказывает, что это вытекает из гипотезы внешней реальности.

Гипотеза вычислимой Вселенной

Наша физическая реальность – это математическая структура, определяемая вычислимой функцией.

Гипотеза финитной Вселенной

Наша физическая реальность – это финитная (конечная) математическая структура.

Симметрия и другие математические свойства

Однако, согласно популярному определению, математика – это «формальное изучение математических структур» (от куба, целых чисел до экзотических, вроде банаховых пространств). Одна из наиболее важных задач математиков при изучении математических структур – это доказательство теорем об их свойствах. Но что за свойства может иметь математическая структура, если ее сущностям и отношениям не позволено иметь никаких внутренних свойств?

Рассмотрим математическую структуру, описанную в левой части рис. 5. Между входящими в нее сущностями нет никаких отношений, так что нет ничего, что позволило бы отличить одну из этих сущностей от любой другой. Значит, данная математическая структура не имеет никаких свойств, кроме мощности – числа сущностей в ней. Математики называют эту математическую структуру «множеством из восьми элементов», и единственное ее свойство – наличие восьми элементов.

Рис. 5.

Среднее изображение на рис. 5 описывает другую математическую структуру с восемью элементами, которая включает их отношения. Одно из описаний этой структуры состоит в том, что ее элементы – это вершины куба, а отношения задают, какие вершины соединены между собой ребрами. Помните, однако, что не следует путать описание с тем, что описывается: математическая структура не имеет собственных свойств (например, размера, цвета, текстуры или состава) – она содержит только восемь связанных отношениями сущностей, которые вы можете по желанию интерпретировать как вершины куба. В правой части рис. 5 представлено эквивалентное определение этой математической структуры без ссылок на геометрические понятия вроде «куб», «вершина» или «ребро».

Но если сущности внутри этой структуры не имеют собственных свойств, то могут ли иметься такие свойства у самой структуры? Да – это симметрия (табл. 1). В физике нечто называют обладающим симметрией, если оно остается неизменным, когда вы определенным образом преобразуете его.

Знаменитый больной вопрос философии – проблема бесконечного регресса. Например, если мы говорим, что свойства алмаза объясняются свойствами и расположением в нем атомов углерода, свойства атомов углерода – свойствами и расположением в них протонов, нейтронов и электронов, а свойства протонов – свойствами и расположением в них кварков, кажется, что мы обречены вечно пытаться объяснять свойства этих составных частей. Гипотеза математической Вселенной предлагает радикальное решение этой проблемы: на нижнем уровне реальность – это математическая структура, так что ее части вообще не имеют внутренних свойств. Иными словами, из гипотезы математической Вселенной вытекает, что мы живем в реляционной реальности, то есть свойства окружающего мира обусловлены не свойствами первичных «строительных блоков», из которых он сложен, а отношениями между «блоками». Внешняя физическая реальность является, таким образом, чем-то большим, нежели суммой ее частей. Она может иметь много интересных свойств, хотя ее части вообще не имеют собственных свойств.

Каждую математическую структуру можно проанализировать на предмет симметричности, и у многих обнаруживаются интересные симметрии. Одним из самых важных открытий в физике стало наличие встроенных симметрий и у нашей физической реальности. Так, законы физики обладают вращательной симметрией, то есть во Вселенной нет выделенного направления, которое можно было бы назвать «верхом». Они также, по-видимому, имеют трансляционную симметрию (относительно сдвига), то есть нет особого места, которое можно было бы назвать центром пространства. В XX веке было открыто множество симметрий природы. Они лежат в основе эйнштейновских теорий относительности, квантовой механики и Стандартной модели элементарных частиц.

Свойства симметрии, столь важные для физики, появляются именно благодаря отсутствию собственных свойств у «строительных блоков» реальности. Если бы точки трехмерного пространства обладали свойствами, которые делали бы одни точки внутренне отличными от других, пространство утратило бы свою вращательную и трансляционную симметрию. «Меньше – это больше» в том смысле, что чем меньше свойств имеют точки, тем больше симметрий у пространства.

Если гипотеза математической Вселенной верна, то наша Вселенная является математической структурой, и из ее описания бесконечно разумный математик должен иметь возможность вывести все физические теории. Как именно он это сделает? Ученые не знают. Но Тегмарк уверен, что первым его шагом стало бы определение симметрий этой математической структуры.

Резюме

Физики продолжают открывать в природе формы, схемы и закономерности, которые удается описывать математическими уравнениями.

Ткань нашей физической реальности содержит десятки безразмерных чисел, исходя из которых, в принципе, можно вычислить все измеримые постоянные.

Некоторые физические сущности, например, пустое пространство, элементарные частицы и волновая функция, кажутся чисто математическими в том смысле, что все присущие им свойства являются математическими.

Гипотеза внешней реальности (ГВР), состоящая в том, что существует внешняя физическая реальность, совершенно независимая от людей, признается большинством физиков.

При достаточно широком определении математики из ГВР вытекает гипотеза математической Вселенной (ГМВ), утверждающая, что наш физический мир является математической структурой.

Это означает, что наш физический мир не только описывается математикой, но и является математической структурой, что делает нас самосознающими частями гигантского математического объекта.

Математическая структура – это абстрактное множество сущностей с отношениями между ними. Эти сущности не имеют «багажа»: кроме этих отношений они не обладают никакими свойствами.

Математическая структура может обладать интересными свойствами, например, симметриями, несмотря на то, что ни входящие в нее сущности, ни отношения между ними не обладают собственными свойствами.

ГМВ разрешает пользующуюся дурной славой проблему бесконечного регресса. Она заключается в том, что свойства природы можно объяснять лишь свойствами ее частей, которые требуют дальнейшего объяснения, и так до бесконечности: свойства природы возникают не из свойств ее самых фундаментальных «строительных блоков» (которые не обладают никакими свойствами), а из отношений между «блоками».

Вывод

В этом конспекте затронута лишь часть обоснований того, что внешняя физическая реальность является математической структурой. Это действительно звучит безумно, однако, как написал Тегмарк, это лишь разминка. В последующих главах Тегмарк занимается следствиями и проверяемыми предсказаниями, вытекающими из гипотезы математической Вселенной, и там все станет еще безумнее. Кроме этого, Тегмарк придет к неизбежному выводу о новом мультиверсе, столь огромном, что в сравнении с ним поблекнет даже мультиверс III уровня в квантовой механике.

Гипотеза математической Вселенной поднимает сразу три вопроса:

Что в точности является математической структурой?

Как именно наш физический мир может быть математической структурой?

Дает ли это утверждение какие-либо проверяемые предсказания?

В этом конспекте был затронут первый вопрос. Со вторым и третьим можно ознакомиться самим в оригинале (второй вопрос – глава «Иллюзорно ли время?», третий вопрос – глава «Мультиверс IV уровня»). Два последних понятия из табл. 1 (Гипотеза вычислимой Вселенной и Гипотеза финитной Вселенной) затрагиваются в главе «Мультиверс IV уровня».

Математические уравнения, которые изменили мир

Для большинства людей математика — это что-то скучное и совершенно ненужное в обычной жизни. Глядя на все эти цифры, сложно понять, что в них такого. На самом деле математика, наравне с физикой — самые важные предметы, ведь она по сути раскрывает секреты мироздания.

В этой статье мы расскажем о математических уравнениях, которые изменили мир. И, может быть, в очередной раз взглянув на эти цифры, ты уже будешь думать о них не просто как о наборе символов, а как о чем-то, что помогло человечеству продвинуться вперед.

Теорема Пифагора

Вряд ли кто-то не слышал или не видел этой теоремы, даже если он плохо учился в школе. Она говорит о том, что сумма квадратов длин катетов равна квадрату гипотенузы. Если говорить простыми словами, то это отношение длин сторон прямоугольного треугольника.

Казалось бы, одна из самых простых формул, глядя на которую, глаза не начинают слезиться от огромного количества символов, но она сделала для человечества очень много. Помимо архитектуры и других инженерных дисциплин, теорема Пифагора применяется в навигации, картографии и других важных для человечества науках.

Теорему Пифагора применяют в таком большом количестве точных наук, что проще сказать, где она не используется. Несмотря на то, что теорема была открыта несколько тысячелетий назад, она до сих пор служит на благо человечества.

Закон всемирного тяготения Ньютона

Эта формула выглядит чуть сложнее, чем предыдущая, и она принесла не меньше благ человечеству. Исаак Ньютон, одна из самых выдающихся личностей в науке, открыл этот закон около 1666 года и буквально перевернул им мир.

Эта формула позволила лучше понять движение различных физических объектов и явлений. Причем Ньютон своим законом заложил основы для более сложных научных теорий, таких как Общая теория относительности и Квантовая гравитация.

Логарифмы

Пожалуй, самые нелюбимые формулы у школьников, ведь мало кто понимает их суть и необходимость. Может сейчас важность логарифмов и не так велика, но в прошлом, до появления цифровых компьютеров, они являлись наиболее быстрым способом умножения больших чисел.

Ну, и что такого, спросишь ты, умножать стали быстрее, как же это повлияло на мир? А так, что теперь ученые смогли сосредоточиться на воплощении своих теорий в жизнь, а не на долгих и нудных подсчетах.

Второй закон термодинамики

Второй закон термодинамики говорит о том, что в закрытой системе энтропия всегда постоянна и возрастает. Звучит непонятно, если не разобраться. Если сказать просто, то в системе, которая первоначально находится в упорядоченном неравномерном состоянии, например, горячая рядом с холодной, они будут стремиться к выравниванию, то есть к стабилизации температур, пока они не станут одинаковыми. Кроме того, уравнение говорит, что каждый раз, когда энергия изменяется или перемещается, она становится менее полезной.

Казалось бы, и что здесь такого, и чем это поменяло мир? А тем, что благодаря этому закону началось развитие двигателей внутреннего сгорания, современной металлургии, эффективного производства электроэнергии и других сфер деятельности.

Преобразование Фурье

Французский математик Жан-Батист Жозеф Фурье сформулировал свое уравнение интегралов еще в начале 19 века, но они до сих пор используются в науке. Если говорить простым языком, то преобразования Фурье необходимы для понимания более сложных волновых структур, например, человеческой речи, позволяя разбить беспорядочную функцию на комбинацию простых волн. Это значительно упрощает анализ сигналов.

Для каких сфер она несет пользу? Для астрономии, акустики, радиотехники и для других, работающих со звуком. Ты сталкиваешься с преобразованием Фурье каждый раз, когда слушаешь музыку или голосовое сообщение, включаешь радио в машине и так далее.

Концепция эквивалентности массы и энергии

Думаем, ты слышал об уравнении Альберта Эйнштейна, сформулированном им в 1905 году, хотя на самом деле оно было предложено еще до знаменитого ученого. Казалось бы, что в нем особенного, ведь оно куда короче всего того, что преподают на математике даже на гуманитарных факультетах. Но с этой концепцией человечество вступило в новую эпоху.

Опираясь на эту формулу, ученые изучают космос, строят ускорители частиц, стараются понять природу субатомного мира. Концепция стала настолько известной, что, наравне со значком атома, является одним из главных символов науки.

Уравнения Максвелла

Британский физик, математик и механик Джеймс Клерк Максвелл был весьма плодовит в плане науки и заложил основы современной классической электродинамики, а также ввел несколько понятий в физику, которые используются и по сей день.

Одним из главных трудов Максвелла стала система из 20 уравнений, описывающих работу электрических и магнитных полей, а также их взаимодействие. В настоящее время уравнения Максвелла представляют собой систему из четырех уравнений, которые можно описать следующими словами:

1. Электрический заряд является источником электрической индукции.
2. Магнитные заряды не обнаружены.
3. Изменение магнитной индукции порождает вихревое электрическое поле.
4. Электрический ток и изменение электрической индукции порождают вихревое магнитное поле.

Выглядит как китайская грамота для гуманитарных умов, но поверь, без этих четырех уравнений ты бы, возможно, не пользовался сейчас благами цивилизации вроде компьютеров, смартфонов и другой техники, работающей на электричестве, или, как минимум, они выглядели бы иначе.

Уравнение Шредингера

Многие знают ученого Эрвина Шредингера только по мысленному эксперименту «кота Шредингера». Но этот австрийский ученый сделал для науки куда больше, чем простой мысленный эксперимент, выведя уравнение, описывающее, как состояние квантовой системы изменяется со временем и определяет поведение атомов и субатомных частиц в квантовой механике.

Эта сложная формула открыла человечеству путь к атомной энергетике, микрочипам, квантовым вычислениям и другим важным для современного общества дисциплинам.

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Вернем получившееся равенство в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Пример 4. Рассмотрим равенство

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Чтобы выразить число 3 мы поступили следующим образом:

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства позволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Отсюда .

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Отсюда .

Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве вместо числа 15 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного делимого.

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве вместо числа 5 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного делителя.

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Компонентами умножения являются множимое, множитель и произведение

Компонентами деления являются делимое, делитель и частное

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Вычислим правую часть получившегося уравнения:

Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

При этом переменная x является не просто множителем, а неизвестным множителем

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Вычислим правую часть, получим значение переменной x

Для проверки найденный корень отправим в исходное уравнение и подставим вместо x

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Отсюда x равен 2

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Согласно порядку действий, в первую очередь выполняется умножение:

Подставим корень 2 во второе уравнение 28x = 56

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение

Вычтем из обеих частей уравнения число 10

Приведем подобные слагаемые в обеих частях:

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Отсюда .

Вернемся к исходному уравнению и подставим вместо x найденное значение 2

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Вычтем из обеих частей уравнения число 12

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 4x , а в правой части число 4

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Отсюда

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Пример 3. Решить уравнение

Раскроем скобки в левой части равенства:

Прибавим к обеим частям уравнения число 8

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 2x , а в правой части число 9

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Получается верное равенство. Значит число 2 действительно является корнем уравнения .

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

В результате останется простейшее уравнение

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:

Пример 2. Решить уравнение

Умнóжим обе части уравнения на 15

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Перепишем то, что у нас осталось:

Раскроем скобки в правой части уравнения:

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Приведем подобные слагаемые в обеих частях, получим

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 5

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на 3

В левой части можно сократить две тройки, а правая часть будет равна 18

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 9

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение

Умнóжим обе части уравнения на 6

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Сократим в обеих частях уравнениях то, что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки в обеих частях уравнения:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Приведем подобные слагаемые в обеих частях:

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение

Раскроем скобки в обеих частях уравнения там, где это можно:

Умнóжим обе части уравнения на 15

Раскроем скобки в обеих частях уравнения:

Сократим в обеих частях уравнения, то что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки там, где это можно:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Приведем подобные слагаемые в обеих частях уравнения:

Найдём значение x

В получившемся ответе можно выделить целую часть:

Вернемся к исходному уравнению и подставим вместо x найденное значение

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно

Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Подставим найденное значение 2 вместо x в исходное уравнение:

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Выполним сокращение в каждом слагаемом:

Перепишем то, что у нас осталось:

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Этим методом мы тоже будем пользоваться часто.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение . Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Приведем подобные слагаемые:

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

или разделить обе части уравнения на −1 , что еще проще

Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения на минус единицу:

После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10

Корень этого уравнения, как и уравнения равен 5

Значит уравнения и равносильны.

Пример 2. Решить уравнение

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения на −1 можно записать подробно следующим образом:

либо можно просто поменять знаки всех компонентов:

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения на −1 , мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Приведем подобные слагаемые в левой части:

Прибавим к обеим частям 77 , и разделим обе части на 7

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2

Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Уравнения вида мы решали выражая неизвестное слагаемое:

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:

Далее разделить обе части на 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Пример 2. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид

Пусть

Пример 2. Решить уравнение

Раскроем скобки в левой части равенства:

Приведем подобные слагаемые:

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении левую и правую часть поменяем местами:

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения определить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении v × t = s обе части разделим на v

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение примет следующий вид

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Затем разделить обе части на 50

Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Разделим обе части уравнения на b

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

В левой части вынесем за скобки множитель x

Разделим обе части на выражение a − b

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Умнóжим обе части на a

В левой части x вынесем за скобки

Разделим обе части на выражение (1 − a)

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид .
Отсюда .

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.


источники:

http://brodude.ru/matematicheskie-uravneniya-kotorye-izmenili-mir/

http://spacemath.xyz/obshhie-svedeniya-ob-uravneniyah/