Что называется решить уравнение с двумя переменными

Уравнения с двумя переменными (неопределенные уравнения)

Разделы: Математика

Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

Цель урока:

    повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
  • воспитание познавательного интереса к учебному предмету
  • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

Урок 1.

Ход урока.

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5•2+6 = 1

x = 4, y = -2.5•4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

m, n, x, y Z

Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид

5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: где m Z.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: , где n Z.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) =>

    б) =>

    в) =>

    г) =>

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а)

    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б)

    в)

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Z
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Z
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Z
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Z
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Z
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Z
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Z
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Z

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) (1;2), (5;2), (-1;-1), (-5;-2)

    Число 3 можно разложить на множители:

    a) б) в) г)
    в) (11;12), (-11;-12), (-11;12), (11;-12)
    г) (24;23), (24;-23), (-24;-23), (-24;23)
    д) (48;0), (24;1), (24;-1)
    е) x = 3m; y = 2m, mZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Z
    з) x = 2m; y = m; x = 2m; y = -m, m Z
    и)решений нет

    4) Решить уравнения в целых числах

    (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    (-4;-1), (-2;1), (2;-1), (4;1)
    (-11;-12), (-11;12), (11;-12), (11;12)
    (-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) (-1;0)
    б)(5;0)
    в) (2;-1)
    г) (2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Уравнение с двумя переменными

    Уравнение с двумя переменными и его решение

    Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y.

    Например: 2x+5y = 6; -x+1,5y = 0; $\frac<1><2>$ x-8y = 7

    Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y.

    Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$

    Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество.

    О тождествах – см. §3 данного справочника

    Например: для уравнения 2x+5y=6 решениями являются пары

    x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д.

    Уравнение имеет бесконечное множество решений.

    Свойства уравнения с двумя переменными

    Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.

    Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной:

    • если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному;
    • если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному.

    Например: $2x+5y = 6 ⟺5y = -2x+6 \iff y = -0,4x+1,2$

    Примеры

    Пример 1. Из данного линейного уравнения выразите y через x и x через y:

    Алгоритм: рассмотрим 3x+4y=10

    1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10

    2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x).

    Аналогично для x(y): $3x+4y = 10 \iff 3x = -4y+10 \iff x = -1 \frac<1> <3>y+3 \frac<1><3>$

    Как решать систему уравнений

    О чем эта статья:

    8 класс, 9 класс, ЕГЭ/ОГЭ

    Основные понятия

    Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

    Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

    Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

    Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

    Линейное уравнение с двумя переменными

    Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

    Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

    Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

    Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

    Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

    Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

    Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

    Провести прямую через эти две точки и вуаля — график готов.

    Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

    Система двух линейных уравнений с двумя переменными

    Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

    Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

    Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

    Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

    Можно записать систему иначе:

    Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

    Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

    Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

    Метод подстановки

    Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

    Выразить одну переменную через другую из более простого уравнения системы.

    Подставить то, что получилось на место этой переменной в другое уравнение системы.

    Решить полученное уравнение, найти одну из переменных.

    Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

    Записать ответ. Ответ принято записывать в виде пар значений (x; y).

    Потренируемся решать системы линейных уравнений методом подстановки.

    Пример 1

    Решите систему уравнений:

    x − y = 4
    x + 2y = 10

    Выразим x из первого уравнения:

    x − y = 4
    x = 4 + y

    Подставим получившееся выражение во второе уравнение вместо x:

    x + 2y = 10
    4 + y + 2y = 10

    Решим второе уравнение относительно переменной y:

    4 + y + 2y = 10
    4 + 3y = 10
    3y = 10 − 4
    3y = 6
    y = 6 : 3
    y = 2

    Полученное значение подставим в первое уравнение вместо y и решим уравнение:

    x − y = 4
    x − 2 = 4
    x = 4 + 2
    x = 6

    Ответ: (6; 2).

    Пример 2

    Решите систему линейных уравнений:

    x + 5y = 7
    3x = 4 + 2y

    Сначала выразим переменную x из первого уравнения:

    x + 5y = 7
    x = 7 − 5y

    Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

    3x = 4 + 2y
    3 (7 − 5y) = 4 + 2y

    Решим второе линейное уравнение в системе:

    3 (7 − 5y) = 4 + 2y
    21 − 15y = 4 + 2y
    21 − 15y − 2y = 4
    21 − 17y = 4
    17y = 21 − 4
    17y = 17
    y = 17 : 17
    y = 1

    Подставим значение y в первое уравнение и найдем значение x:

    x + 5y = 7
    x + 5 = 7
    x = 7 − 5
    x = 2

    Ответ: (2; 1).

    Пример 3

    Решите систему линейных уравнений:

    x − 2y = 3
    5x + y = 4

    Из первого уравнения выразим x:

    x − 2y = 3
    x = 3 + 2y

    Подставим 3 + 2y во второе уравнение системы и решим его:

    5x + y = 4
    5 (3 + 2y) + y = 4
    15 + 10y + y = 4
    15 + 11y = 4
    11y = 4 − 15
    11y = −11
    y = −11 : 11
    y = −1

    Подставим получившееся значение в первое уравнение и решим его:

    x − 2y = 3
    x − 2 (−1) = 3
    x + 2 = 3
    x = 3 − 2
    x = 1

    Ответ: (1; −1).

    Метод сложения

    Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

    При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

    Складываем почленно левые и правые части уравнений системы.

    Решаем получившееся уравнение с одной переменной.

    Находим соответствующие значения второй переменной.

    Запишем ответ в в виде пар значений (x; y).

    Система линейных уравнений с тремя переменными

    Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

    Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

    Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

    Решение задач

    Разберем примеры решения систем уравнений.

    Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

    5x − 8y = 4x − 9y + 3

    5x − 8y = 4x − 9y + 3

    5x − 8y − 4x + 9y = 3

    Задание 2. Как решать систему уравнений способом подстановки

    Выразить у из первого уравнения:

    Подставить полученное выражение во второе уравнение:

    Найти соответствующие значения у:

    Задание 3. Как решать систему уравнений методом сложения

    1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
    1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
    1. Найти у, подставив найденное значение в любое уравнение:
    1. Ответ: (1; 1), (1; -1).

    Задание 4. Решить систему уравнений

    Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

    Задание 5. Как решить систему уравнений с двумя неизвестными

    При у = -2 первое уравнение не имеет решений, при у = 2 получается:


    источники:

    http://reshator.com/sprav/algebra/7-klass/uravnenie-s-dvumya-peremennymi/

    http://skysmart.ru/articles/mathematic/reshenie-sistem-uravnenij