Что называется уравнением нивелирного хода

Тема: Геометрическое нивелирование. Камеральная обработка результатов технического нивелирования. Нивелирование поверхности

1. Проверка полевых вычислений

_______ Для проверки полевых вычислений производится постраничный контроль в нивелирном журнале:

Σa – сумма отсчетов на заднюю рейку,
Σb – сумма отсчетов на переднюю рейку,
Σhср. – сумма средних превышений.

_______ Постраничный контроль выполняется при следующем условии:

________ Допустимое расхождение – 2мм за счет округления.

2. Вычисление невязки в превышениях нивелирного хода

_______ Невязка в геодезии показывает отклонение полученного на практике результата от его теоретического значения ( fh ), то есть для нивелирного хода, и вычисляется как:

_______ Если нивелирный ход замкнутый, то

_______ Если нивелирный ход разомкнутый, расположенный между двумя реперами с отметками HR1 и HR2 , то

_______ Допустимая невязка в превышениях нивелирного хода подсчитывается по формуле:

,

где l –длина нивелирного хода (в км). Длину хода определяют из пикетажного журнала.

_______ Для сильно пересеченной местности, когда приходится брать много иксовых точек и, соответственно, делать много станций, допустимая невязка вычисляется по формуле:

,

где n – число станций.

_______ Невязка распределяется поровну на все превышения с противоположным знаком.

_______ Контроль : Сумма исправленных превышений должна быть равна Σhтеор. После этого вычисляются отметки всех точек нивелирного хода.

3. Вычисление отметок точек нивелирного хода

_______ Существует два способа вычисления отметок.

3.1. 1-й способ: вычисление отметок через превышения

_______ Этот способ применяется при вычислении отметок связующих точек (пикетных и иксовых).

3.2. 2-й способ: вычисление отметок через горизонт прибора

_______ Этим способом вычисляются отметки промежуточных или плюсовых точек, а также точек поперечника.

_______ Горизонтом прибора (Г.П.) называется высота визирного луча над уровенной поверхностью.

________ Известно: НПК2 , НПК3 , ( a , b , c , d ) – отсчеты по рейкам.
Требуется определить горизонт прибора (Г.П.) и отметки плюсовых точек ( НПК2+62 , НПК2+80 ):

Тогда

4. Построение профиля трассы

_______ По полученным отметкам строится профиль трассы. При построении профиля наносятся в определенном порядке все пикеты и промежуточные точки. Против каждой точки по вертикали откладываются их отметки.

_______ Профилем называется изображение на бумаге в уменьшенном виде вертикального разреза местности.

_______ Для того чтобы изображение рельефа на профиле было более выразительным, масштаб вертикальных расстояний делается в 10 раз крупнее масштаба горизонтальных. Порядок построения профиля и методика проектирования по профилю будут рассмотрены на лабораторных занятиях.

5. Нивелирование поверхности

_______ Нивелирование поверхности производится для съемки рельефа местности и нанесения его на крупномасштабный топографический план. Результаты нивелирования поверхности используются при составлении проектов вертикальной планировки.

_______ Существует два способа нивелирования поверхности.
1. При нивелировании незастроенного участка со спокойным рельефом применяется способ нивелирования по квадратам .
2. При нивелировании застроенных участков применяется способ магистралей .

Нивелирование поверхности по квадратам

_______ Квадраты разбивают с помощью теодолита и мерной ленты. Стороны квадратов – от 10 до 50 м , в зависимости от детальности изображения рельефа. Внутри участка прокладывается замкнутый нивелирный ход.

_______ Отсчеты на связующие точки производятся по черной и красной сторонам рейки. Отсчеты на остальные вершины квадратов – только по черной стороне. Невязка в нивелирном ходе рассчитывается по следующей формуле:

_______ Отметки связующих точек вычисляются через исправленные превышения. Отметки остальных вершин квадратов вычисляются через горизонт прибора.
Если участок местности небольшой, нивелирование может быть выполнено с одной постановки нивелира.

_______ Отметки точки в этом случае вычисляются через горизонт прибора.

_______ По результатам нивелирования поверхности составляется топографический план с изображением рельефа горизонталями. Горизонтали наносятся на план путем интерполирования полученных отметок .

6. Построение плана

_______ При построении плана по результатам нивелирования поверхности по квадратам в заданном масштабе строится сетка квадратов, у вершин которых выписываются их отметки.

_______ Горизонтали наносятся на план путем интерполирования отметок . Интерполирование отметок может быть выполнено на глаз, но метод требует достаточного навыка. Одним из наиболее простых является метод интерполирования с помощью миллиметровки.

Статьи о радиотехнике, технологиях, чертежах, 3D-моделировании

Публикации для людей, интересующихся наукой и техникой

Рельеф местности — это совокупность неровностей поверхности земли, он является одной из важнейших характеристик местности. Знать рельеф — значит знать высоты всех точек местности. Высоту точки на местности определяют по превышению этой точки относительно другой точки, высота которой известна. Процесс измерения превышения одной точки относительно другой называется нивелированием.

Начальной точкой счета высот в нашей стране является нуль Кронштадтского футштока. От этого нуля идут ходы нивелирования, пункты которых имеют Балтийской системе высот. Затем от этих пунктов с известными высотами прокладывают новые нивелирные ходы и так далее, пока не получится довольно густая сеть, каждая точка которой имеет известную высоту. Эта сеть называется государственной сетью нивелирования; она покрывает всю территорию страны. Иногда высоты точек определяют в условной системе высот, если поблизости нет пунктов государственной нивелирной сети. Вследствие того, что измерение превышений выполняют различными приборами и разными способами, различают следующие нивелирования:

  • геометрическое;
  • тригонометрическое;
  • барометрическое;
  • гидростатическое.

Геометрическое нивелирование – это метод определения превышения с помощью горизонтального визирного луча и нивелирных реек (рис. 1). Для получения горизонтального луча используют прибор, который называется нивелиром. Геометрическое нивелирование широко применяется в геодезии и строительстве.

Рис. 1. Способы геометрического нивелирования: а – способ «из середины»; б – способ «вперед»

Сущность геометрического нивелирования заключается в следующем. Нивелир устанавливается горизонтально и по рейкам с делениями, стоящими на точках А и В, определяют превышение h как разность между отрезками а и b: h = а – b. Длины отрезков а и b в геодезии называют отсчетами, а иногда – «взглядом».

Горизонтальный визирный луч создает специальный геодезический прибор – нивелир, устанавливаемый между точками А и В. На точках А и В местности отвесно устанавливают нивелирные рейки с нанесенными на них делениями.

Для геометрического нивелирования могут быть использованы кроме нивелира и другие геодезические приборы (теодолиты, тахеометры и т. д.), если придать их визирным осям строго горизонтальное положение. Различают способы геометрического нивелирования «из середины» и «вперед» (рис. 1, а, 6).

Геометрическое нивелирование «из середины» осуществляют следующим образом. Для определения превышения h между точками А и В (рис. 1, а) в этих точках отвесно устанавливают рейки и берут отсчеты а («взгляд назад») на точку А и b («взгляд вперед») на точку В. Как следует из рис. 1, а, превышение между точками А и В равно:

Если превышение h оказалось положительным, то это означает, что передняя точка В расположена выше задней точки А и, наоборот, при отрицательном значении превышения h передняя точка расположена ниже задней.

Таким образом, превышение передней точки над задней равно разности отсчетов «взгляд назад» минус «взгляд вперед».

Если известна высота На задней точки А, то вычислив превышение, легко определить высоту Нb передней точки В по формуле:

То есть высота передней точки равна высоте задней плюс соответствующее превышение. Высота последующей точки может быть также определена через горизонт инструмента прибора Hi (рис. 1, а):

Горизонт прибора равен высоте точки плюс «взгляд на эту точку». Тогда высоту передней точки В легко определить по формуле:

Высота точки равна горизонту инструмента минус «взгляд на эту точку».

Способ нивелирования «из середины» является основным при производстве инженерных работ, поскольку практически не сказывается на результатах нивелирования точность юстировки прибора, а также влияние кривизны Земли и рефракции земной атмосферы. При геометрическом нивелировании способом «вперед» прибор устанавливают таким образом, чтобы окуляр его трубы находился над точкой А (рис. 1, 6). Вертикальное расстояние от центра окуляра до точки А называют высотой прибора i. Высоту прибора обычно измеряют с помощью вертикально установленной рейки.

Если в точке В установить рейку и взять на нее отсчет «взгляд вперед» b, то превышение между точками А и В определится:

На результаты нивелирования способом «вперед» существенное влияние оказывает точность юстировки прибора, а также влияние кривизны Земли и рефракции земной атмосферы. Поэтому геометрическое нивелирование способом «вперед» используют, как правило, при поверках и юстировках нивелиров перед началом полевых работ.

Нивелирование с одной стоянки прибора (станции) называют простым. Если требуется определить превышения или высоты для многих точек на значительном протяжении, то нивелирование осуществляют с нескольких станций, т. е. прокладывают нивелирный ход. Такое нивелирование называют сложным.

В процессе сложного нивелирования точки, общие для двух смежных станций, называют связующими, а остальные – промежуточными (рис. 2).

Рис. 2. Схема нивелирного хода: точки связующие (Рп, ПК1, +28, ПК3, +31,+72, ПК5); точки промежуточные (+41, ПК2, ПК4); а – продольный план.

При сложном нивелировании особое внимание уделяют связующим точкам, так как ошибка, допущенная в определении высоты одной из связующих точек, передается на все последующие.

При изысканиях автомобильных дорог, мостовых переходов, каналов и других линейных инженерных сооружений нивелирование ведут вдоль трассы сооружений, с определением высот переломных и характерных точек местности, с последующим составлением продольного профиля по оси будущего сооружения. Такое нивелирование называют продольным.

В характерных местах производят определение высот точек местности по перпендикулярам к трассе. Такое нивелирование называют поперечным. Необходимо иметь в виду, что поперечное геометрическое нивелирование производят обычно при небольшом перепаде высот между крайними точками поперечников, когда каждый поперечник может быть снят с 1-2 станций.

Классификация и устройство нивелиров

В соответствии с ГОСТ Р 53340-2009 нивелиры классифицируют по нескольким признакам.

По принципу приведения визирной оси зрительной трубы в горизонтальное положение существует нивелиры с уровнем при зрительной трубы нивелиры с компенсаторами.

В приборах с уровнем перед каждым отсчетом по рейке пузырек цилиндрического уровня выводится на середину элевационным винтом. Таким нивелиром является, например, нивелир Н-3. Его устройство показано на рис. 3.

Рис. 3. Устройство нивелира с уровнем при трубе:

1 — зрительная труба; 2 — фокусирующий винт зрительной трубы;

3, 4 — закрепительный и наводящий винты; 5 — круглый уровень;

6 — исправительные винты круглого уровня; 7 — подъемные винты; 8 — подставка;

9 — элевационный винт; 10 — окуляр с диоптрийным кольцом для фокусировки трубы по глазу;

11 — исправительные винты цилиндрического уровня;12 — цилиндрический уровень

Вращая элевационный винт 9 (рис. 3), изменяющий наклон трубы 1 и цилиндрического уровня 12, приводят ось уровня в горизонтальное положение. Ось уровня горизонтальна, если его пузырек находится в нуль-пункте, на что указывает совмещение концов изображений половинок уровня в поле зрения трубы (рис. 4).

Рис. 4. Поле зрения зрительной трубы нивелира: отсчет по рейке равен 1449 мм

У нивелиров с компенсаторами визирная ось зрительной трубы автоматически приводится в горизонтальное положение с помощью специального устройства, называемого компенсатором. Компенсатор действует в пределах определенного диапазона, обычно 12-15´, поэтому предварительно прибор должен быть приведен в рабочее положение по круглому установочному уровню. Компенсаторы делят на две группы: оптико- механические и жидкостные.

Оптико-механические (маятниковые) компенсаторы используют свойство маятника занимать отвесное положение при наклоне прибора. На маятнике крепится оптическая деталь зрительной трубы (призма, зеркало), которая при наклоне прибора приводит визирную ось в горизонтальное положение. Для гашения колебаний маятника нивелир снабжают демпфером. По конструкции демпферы бывают воздушные или магнитные. Более надежны ми в эксплуатации считаются магнитные демпферы, они обеспечивает более высокую стабильность результатов измерений.

В жидкостных компенсаторах компенсирующим элементом является слой жидкости, поверхность которой при наклоне прибора всегда принимает горизонтальное положение, образуя со стеклянным дном ампулы оптический клин с углом, при вершине равным углу наклона прибора.

Нивелиром с компенсатором является, например, нивелир SETL AT24D. Его устройство показано на рис. 5.

Рис. 5. Устройство нивелира с компенсатором:

1 — зрительная труба; 2 — круглый уровень;

3 — исправительные винты круглого уровня; 4 — наводящий винт;

5 — подъемные винты; 6 — подставка; 7 — кремальера;

8 — визир; 9 — крышка окуляра; 10 — окуляр;

11 — горизонтальный лимб

По точности, в зависимости от величины средней квадратической погрешности (СКП) измерения превышения на 1 км двойного хода, нивелиры делят на высокоточные, точные и технические.

По способу отсчитывания по рейке нивелиры делятся на визуальные и цифровые. Нивелиры с цифровым отсчетом в своей конструкции содержат электронно-цифровой датчик, позволяющей автоматически считывать положение визирной линии по специальной штрих-кодовой рейке, а также регистрировать, хранить и обрабатывать информацию.

Цифровые (электронные) нивелиры являются многофункциональными геодезическими приборами, совмещающими функции оптического нивелира, электронного запоминающего устройства и встроенного программного обеспечения для обработки полученных результатов. К таким нивелирам относится, например, точный нивелир SDL50 (рис. 6).

Рис. 6. Цифровой нивелир SDL50

Основные требования к нивелирным рейкам

Нивелирные рейки используют для определения превышений точек местности относительно плоскости нивелирования. В зависимости от класса и точности нивелирования применяются различные типы реек.

Условное обозначение отечественных нивелирных реек, применяемых для оптических нивелиров, состоит из буквенного обозначения, цифрового обозначения группы нивелиров, для которой она предназначена (для высокоточных нивелиров 05, точных — 3, технических — 10), номинальной длины рейки и обозначения стандарта. В обозначении складных реек или реек с прямым изображением оцифровки шкал после указания номинальной длины добавляют соответственно буквы С и (или) П.

Рейки для цифровых нивелиров имеют RAB- или BAR-код, по которому с помощью цифрового нивелира снимают отсчет и определяют расстояние до рейки. Рейки для цифровых нивелиров могут быть односторонними или двухсторонними (с дополнительной сантиметровой или E-градуировкой, позволяющей снимать отсчеты с помощью оптического нивелира). Нивелирные рейки могут также использоваться для установки детектора лазерного луча на заданной высоте при работе с лазерными нивелирами (построителями плоскостей).

По конструкции нивелирные рейки могут быть цельными, складными или телескопическими.

Цельными и складными являются, как правило, деревянные рейки. Для их изготовления используют деревянные бруски двутаврового сечения из выдержанной древесины хвойных пород. На нижнюю часть рейки крепится металлическая пластина, называемая пяткой рейки. На одной из сторон реек деления нанесены черным цветом, на другой — красной. На рис. 7 представлены разные виды реек.

Рис. 7. Рейки нивелирные

Рейки телескопической конструкции имеют компактные размеры (в сложенном состоянии), малый вес и очень удобны в использовании с различными оптическими нивелирами. Телескопические рейки обычно изготавливаются из алюминиевого сплава или фибергласса.

Оформление полевых журналов

После получения задания инженеры оформляют обложки журналов и необходимые чертежи, обертывают журнал плотной бумагой и на лицевой стороне пишут номер журнала, свою фамилию. Затем нумеруют листы и оформляют титульный лист, данные о нивелирах и рейках.

Записи в журналах делают вычислительным шрифтом, простым карандашом или шариковой ручкой черного или синего цвета.

Запрещается пользоваться химическими и цветными карандашами.

Ну что понравилась вам статья? Теперь вы знаете, что такое геометрическое нивелирование. Если у вас есть вопросы или нужна консультация пишите сюда.

Подписывайтесь на наш youtube канал, где мы постоянно выкладываем образовательные видео о чертежах, технологиях, 3D.

Техническое нивелирование

Постоянные и временные пункты съемочного геодезического обоснования должны определяться не только плановыми коор­динатами х и у, но и высотной координатой Н. На участке съем­ки в дополнение к пунктам теодолитных ходов, микротриангу­ляции, угловых засечек закладывают специальные высотные гео­дезические знаки — грунтовые и стенные реперы.

Высотные координаты передают на пункты съемочного гео­дезического обоснования от исходных высотных грунтовых и стен­ных реперов высотной геодезической сети I—IV классов. Для это­го через пункты съемочной сети прокладывают ходы геометри­ческого нивелирования IV класса или технического, опирающи­еся на исходные реперы. Нивелирные и теодолитные ходы, про­ложенные через одни и те же пункты, называются теодолитно-нивелирными.

Высота пунктов съемочного обоснования может определяться тригонометрическим нивелированием при проложении теодолит­но-тахеометрических ходов.

Техническое нивелирование включает в себя полевые и каме­ральные работы. Полевые работы начинают с рекогносцировки участка местности, при этом выявляется сохранность исходных реперов государственной высотной геодезической сети, намеча­ются места закладки грунтовых и стенных реперов съемочного Обоснования с учетом их использования в будущем при строи­тельстве. После закрепления на местности всех знаков приступа­ют к техническому нивелированию. Нивелирные ходы должны

опираться на исходные реперы и проходить через предваритель­но намеченные пункты и реперы съемочного обоснования.

Техническое нивелирование выполняется способом из сере­дины. Расстояния до реек допускаются до 120 м, а в благоприят­ных условиях — до 150 м. Неравенство плеч, т.е. расстояний до задней и передней реек, допускается до 10 м. Расстояние до реек проверяется нитяным дальномером или шагами. Нивелирные рейки устанавливают на переносные костыли, башмаки, колыш­ки, забиваемые в землю, или на выступающие точки устойчивых предметов.

Ходы технического нивелирования могут прокладываться: 1) без нивелирования промежуточных точек; 2) с нивелированием проме­жуточных точек. В первом случае (рис. 14, а) на каждой стан­ции отсчеты берутся только по задней и передней рейкам, которые поставлены на устойчивые предметы, называемые связующими точками. Во втором случае (рис. 14, б) отсчеты сначала берутся по рейкам, поставленным на связующие точки, затем по рей­ке, поставленной поочередно на требуемые промежуточные точки.

Рассмотрим методику технического нивелирования для вто­рого случая, когда нивелирный ход прокладывается по трассе проектируемого линейного сооружения, например автомобиль­ной дороги. На трассе забиты пикетные колышки ПКО, ПК1, ПК2 и т.д. через 100 м, а также так называемые плюсовые точки +55, +30, которыми обозначены перегибы земной поверхности на расстояниях 55 м, 30 м, . от соответствующих колышков ПК1, ПК2 и т.д. На каждой станции нивелирного хода действуют в определенной последовательности, называемой программой наблюдений: вначале берут отсчеты (1), (2), по чер­ной стороне задней и передней реек, затем отсчеты (3) и (4) по красной стороне задней и передней реек. После этого вычисляют превышения h‘ = (1)—(2) и h» = (3) — (4). Если расхождение превышений больше 5 мм, наблюдения реек повторяют. Резуль­таты повторных наблюдений записывают в новые строки журна­ла, а неверные записи зачеркивают, но не замазывают. Вычисляют среднее превышение hср = (h‘ + h«) / 2. Если между задней и передней рейками расположены подлежащие нивелированию про­межуточные точки (точка +55, ПК2, +30 на станции I3), то про­грамма продолжается: заднюю рейку поочередно ставят на про­межуточные точки, а соответствующие отсчеты по черной сторо­не рейки записывают в журнал (табл. 1, записи на станции 3).

Рис. 14. Схема технического нивелирования:

а — нивелирный ход; б — нивелирный ход и нивелирование промежуточных точек

Точки, на которые ставят заднюю и переднюю рейки, назы­вают связующими. При перемещении нивелира на каждую сле­дующую станцию рейки 1 и 2 выполняют роли то задней, то передней. Например, нивелир со станции I1 переносят на стан­цию I2, рейку 2 оставляют на связующей точке ПКО, а рейку 1 пере­носят на переднюю (связующую) точку ПК1 (см. рис. 14, а). При переходе на станцию I3 рейку 2 переносят на переднюю точку С, а после наблюдений задней (ПК1) и передней (ПКЗ) реек заднюю рейку 1 ставят поочередно на промежуточных точках.

На крутых ровных склонах, где нет необходимости отмечать плюсовые пикетные точки, рейки приходится ставить на вспомо­гательные связующие точки (колышки или устойчивые предме­ты), которые не являются пикетными и обозначаются х1 х2, . хn , поэтому их называют икс-точками (переходными точками).


Если для нивелирования используются односторонние рей­ки, то вначале отсчеты берут по задней и передней рейкам, затем на 3—10 см меняют высоту нивелира и по этим рейкам вновь берут отсчеты. Вычислив превышения h‘, h«, hcр , нивелируют промежуточные точки.

Перед уходом с трассы на перерыв в работе необходимо на­дежно закрепить переднюю связующую точку. После перерыва нивелирование следует повторить на последней станции и убе­диться, что превышение hср не изменилось более чем на 5 мм.

В ходах технического нивелирования, прокладываемых че­рез пункты съемочного обоснования, нивелируют только связую­щие точки, которые в журнале нивелирования обозначают наи­менованием геодезического пункта или порядковым номером.

7. Записи в журнале технического нивелирования. Постграничный контроль вычислений.Определение фактической невязки превышений в нивелирном ходе, допустимой невязки.Уравнивание превышений. Вычисление высоты (отметки) связующих и промежуточныхпунктов.

Оценка точности результатов нивелирования. Обработ­ка журнала нивелирования завершается в камеральных усло­виях. Сначала для каждой страницы журнала вычисляют сум­мы отсчетов отдельно по задней и передней рейкам ∑З и ∑П (см. табл. 2) и сумму средних превышений ∑hср . Если выполня­ется равенство

то превышения h‘, h» и hcр вычислены верно. Эти действия со­ставляют постраничный контроль вычислений.

Рассчитывают сумму средних превышений ∑hср между началь­ным и конечным реперами с отметками Нн и Нк и находят фактическую невязку превышений (в мм):

(11)

(12)

Допустимую невязку превышений ƒh доп (в мм) вычисляют по формулам, установленным строительными нормами.

(13)

где п — число превышений (станций); L — длина хода, км, в формуле рассматривается как безразмерная величина. При этом если на 1 км хода количество станций п ≥ 25, то применяется первая из формул (13). Например, на сильно пересеченной местности при L = =4 км и п = 100 получаем на 1 км п = 25, тогда ƒh доп =10 =100 мм, но на ровной местности при L = 4 км и n = 36 допустимая невязка превышений ƒh доп = 30 = 60 мм.

Примечание. Формулы (13) обосновываются в теме 1.3.(элементы теории погрешностей) для функции сла­гаемых вида (1.3.17) выражением (1.3.26), в котором при равноточности изме­ренных превышений обозначены:

Уравнивание превышений и вычисление отметок связую­щих и промежуточных точек. Фактическую невязку ƒh, если она не превышает допустимую величину, распределяют между средними превышениями в виде поправок υhi, вычисляемых по формуле

(14)

согласно которой знак поправки противоположен знаку невязки. Поправки округляют до целых миллиметров или до 0,5 мм при условии, что уравненные превышения hi = hср i+ υhi будут выра­жаться числами без долей миллиметра, а сумма поправок равна невязке с обратным знаком, т.е.

(15)

Пример 1. Определить уравненные превышения, если в ниве­лирном ходе из 16 станций Hн = 80,000 м; Hк = 86,563 м; ∑hср = 6598 мм.

Решение. Выразив Hн и Нк в миллиметрах, по формуле (11) найдем ƒh = 6598 — 6563 = +35 мм, а по формуле (13) — ƒh доп = 10 = 40 мм. Средняя величина поправок υhi = -35 :16 =

= -2,2 мм получается дробной, но над средними превышениями в табл. 2 записаны округленные поправки -2; -1,5; -1,5; -2 (их сумма по всему ходу должна равняться невяз­ке ƒh с обратным знаком). Уравненные превышения hi получены без десятых долей миллиметров (h1 = + 0121; h2= + 3513. ).

Отметки Нi связующих точек последовательно находят по формуле

(16)

где hi — уравненные превышения, м.

Если верны значения υhi, hi и безошибочны расчеты по фор­муле (16), то в конце вычислений получится высота Hк конеч­ного репера.

В нашем примере (табл. 1, графа 9) Hпко = 80,000 + 0,121 = 80,121, HПК1 = 80,121 + 3,513 = 83,634, . .

Отметки промежуточных точек вычисляются следующим об­разом. На станциях I, где нивелировали промежуточные точки, определяется (с контролем) отметка горизонта нивелира (гори­зонта прибора):

(17)

где Hi и Hi+1 — отметки задней и передней связующих точек; Зi. и Пi — отсчеты по черной стороне задней и передней реек, м; значения ГП’ и ГП» могут различаться до 0,010 м.

Отметки промежуточных точек определяются по формуле

(18)

где сj — отсчет по рейке на промежуточной точке j, выраженный в метрах.

В нашем примере (табл. 7.4, графа 8) для станции 3 горизонт прибора ГП’3 = 83,634 + 0,823 = 84,457; ГП»3 = 80,609 + 3,849 = 84,458; среднее ГП3 = 84,458, отметки промежуточных точек НПК1+ 55 = 84,458 — 3,625 = 80,833; НПК2 = 84,458 — 1,440 = 83,018 и т.д.

Теодолитно-тахеометрические ходы. При создании плано­во-высотного съемочного обоснования для топографической съем­ки с высотой сечения рельефа hυ = 2 м больше применяют теодо­литно-тахеометрические ходы. При их проложении расстояния между вершинами хода измеряют штриховым дальномером тео­долита в прямом и обратном направлении с относительной по­грешностью 1/400 — 1/500, горизонтальные углы между сторо­нами хода — двумя полуприемами, вертикальные углы — при КЛ и КП по схеме рис. 1, б(тема 2.1.Измерение углов) также в прямом и обратном направле­нии.

В камеральных условиях в журнале проверяют записи и сде­ланные в поле вычисления теодолитно-тахеометрического хода. Вычисляют углы наклона, их среднее значение со знаком верти­кального угла в прямом направлении, затем по формуле (8) —превышения между точками хода. Находят сумму измеренных превышений хода между исходными пунктами и вычисляют фак­тическую невязку ƒh. Допустимая невязка, м,

(19)

где — длина хода, в сотнях метров; п — число его сторон.

Фактическую невязку, если она допустима, распределяют с обратным знаком между вычисленными превышениями, но не поровну, а пропорционально длинам сторон хода, т.е. поправки

(20)

Отметки вершин хода последовательно вычисляют по форму­ле (16). Плановые координаты пунктов теодолитно-тахеометри­ческого хода рассчитывают так же, как и теодолитного, но допус­тимая угловая невязка определяется по формуле ƒβдоп = 2′ , а допустимая абсолютная невязка — по формуле ƒd доп = ∑D/400 .


источники:

http://kompaswork.ru/stati/12-stati/37-geometricheskoe-nivelirovanie.html

http://helpiks.org/6-23296.html