Что называют степенью целого уравнения

Степень уравнения

Кроме разделения уравнений по количеству неизвестных, уравнения также разделяются по степеням неизвестных: уравнения первой степени, уравнения второй степени и так далее.

Чтобы определить степень уравнения, в нём нужно предварительно сделать следующие преобразования:

  • раскрыть скобки,
  • освободить уравнение от дробных членов,
  • перенести все неизвестные члены в одну из частей уравнения,
  • сделать приведение подобных членов.

После выполнения всех этих преобразований, степень уравнения определяется по следующим правилам:

Степенью уравнения с одним неизвестным называется показатель при неизвестном в том члене уравнения, в котором этот показатель наибольший.

10 — x = 2 — уравнение первой степени с одним неизвестным;

x 2 + 7x = 16 — уравнение второй степени с одним неизвестным;

x 3 = 8 — уравнение третьей степени с одним неизвестным.

Степенью уравнения с несколькими неизвестными называется сумма показателей при неизвестных в том члене уравнения, в котором эта сумма наибольшая.

Для примера возьмём уравнение

Для наглядности расставим показатели первой степени (которые обычно не ставят):

3x 2 y 1 + x 1 y 1 + 25 1 = 0.

Теперь посчитаем суммы показателей для тех членов уравнения, в которых присутствуют неизвестные:

3x 2 y 1 — сумма показателей равна 2 + 1 = 3;

x 1 y 1 — сумма показателей равна 1 + 1 = 2.

Сумма показателей у первого члена уравнения больше, чем у второго, значит, при определении степени уравнения будем ориентироваться на сумму показателей первого члена. Это значит, что про данное уравнение можно сказать, что это уравнение третьей степени с двумя неизвестными.

2xyx = 25 — уравнение второй степени с двумя неизвестным,

xy 2 — 2xy + 8y = 0 — уравнение третьей степени с двумя неизвестными.

Алгебра

План урока:

Целое уравнение и его степень

Ранее мы уже изучали понятие целого выражения. Так называют любое выражение с переменной, в котором могут использоваться любые арифметические операции, а также возведение в степень. Однако есть важное ограничение – в целом выражении переменная НЕ может находиться в знаменателе какой-нибудь дроби или быть частью делителя. Также переменная не может находиться под знаком корня. Для наглядности приведем примеры целых выражений:

(n 3 + 7)/5 (в знаменателе находится только число, без переменной);

А вот примеры нецелых выражений:

Отличительной особенностью целых выражений является то, что в них переменная может принимать любое значение. В нецелых же выражениях возникают ограничения на значения переменной, ведь знаменатель дроби не должен равняться нулю, в выражение под знаком корня не должно быть отрицательным.

Введем понятие целого уравнения.

Приведем примеры целых ур-ний:

0,75х 7 + 0,53х 6 – 45х = 18

Напомним, что в математике существует понятие равносильных уравнений.

Когда мы решаем ур-ния, мы в каждой новой строчке записываем ур-ние, равносильное предыдущему. Для этого используются равносильные преобразования (перенос слагаемых через знак «=» с противоположным знаком, деление обоих частей равенства на одинаковые числа и т. д.).

Можно доказать (мы этого делать не будем), что любое целое ур-ние можно возможно преобразовать так, чтобы получилось иное, равносильное ему ур-ние, где в левой части будет находиться многочлен, а справа – ноль. Для этого надо лишь раскрыть скобки и умножить ур-ние на какое-нибудь число, чтобы избавиться от дробей.

Пример. Преобразуйте целое ур-ние

так, чтобы слева стоял многочлен, а справа – ноль.

Решение. В ур-нии есть дроби со знаменателями 5 и 4. Если умножить обе части на 20 (это наименьшее общее кратное чисел 5 и 4), то дроби исчезнут:

Теперь раскроем скобки:

4(5х 3 – 3х 4 + 45х – 27х 2 ) – 40 = 10х 2 + 5х + 35

20х 3 – 12х 4 + 180х – 108х 2 – 40 = 10х 2 + 5х + 35

Осталось перенести все слагаемые влево и привести подобные слагаемые:

20х 3 – 12х 4 + 180х – 108х 2 – 40 – 10х 2 – 5х – 35 = 0

– 12х 4 + 20х 3 – 118х 2 + 175х – 75 = 0

Получили ур-ние в той форме, которую и надо было найти по условию.

Ответ:– 12х 4 + 20х 3 – 118х 2 + 175х – 75 = 0

В математике любой полином можно обозначить как Р(х). Если ур-ние привели к тому виду, когда в одной части многочлен, а в другой ноль, то говорят, что получили ур-ние вида Р(х) = 0.

Получается, что решение целого уравнения всегда можно свести к решению равносильного ему ур-ния Р(х) = 0. Именно поэтому многочлены играют такую большую роль в математике

Напомним, что степенью многочлена называется максимальная степень входящего в его состав одночлена. Это же число является и степенью целого уравнения Р(х) = 0, а также степенью любого равносильного ему целого ур-ния.

Пример. Определите степень ур-ния

(х 3 – 5)(2х + 7) = 2х 4 + 9

Решение. Приведем ур-ние к виду Р(х) = 0. Для этого раскроем скобки:

(х 3 – 5)(2х + 7) = 2х 4 + 9

2х 4 + 7х 3 – 10х – 35 = 2х 4 + 9

Перенесем все слагаемые влево и приведем подобные слагаемые:

2х 4 + 7х 3 – 10х – 35 – 2х 4 – 9 = 0

7х 3 – 10х – 44 = 0

Получили в левой части многочлен 3-ей степени. Следовательно, и исходное ур-ние имело такую же степень

Приведем примеры ур-ний первой степени:

5,4568у + 0,0002145 = 0

Все они являются линейными ур-ниями, метод их решения изучался ранее. Они имеют 1 корень.

Приведем примеры ур-ний второй степени:

6t 2 + 98t – 52 = 0

Это квадратные ур-ния. У них не более двух действительных корней. Для их нахождения в общем случае надо вычислить дискриминант и использовать формулу

Квадратные и линейные ур-ния умели решать ещё в Древнем Вавилоне 4 тысячи лет назад! А вот с ур-ния 3-ей степени (их ещё называют кубическими уравнениями) оказались значительно сложнее. Приведем их примеры:

2х 3 + 4х 2 – 19х + 17 = 0

Лишь в 1545 году итальянец Джералимо Кардано опубликовал книгу, в которой описывался общий алгоритм решения кубических ур-ний. Он достаточно сложный и не входит в школьный курс математики. Его ученик, Лодовико Феррари, предложил метод решения ур-ний четвертой степени. В качестве примера такого ур-ния можно привести:

5х 4 + 6х 3 – 2х 2 – 10х + 1 = 0

Лишь в XIX веке было доказано, что для ур-ний более высоких степеней (5-ой, 6-ой и т. д.) не существует универсальных формул, с помощью которых можно было бы найти их корни.

Отметим, что если степень целого ур-ния равна n, то у него не более n корней (но их число может быть и меньше). Так, количество корней кубического уравнения не превышает трех, а у ур-ния 4-ой степени их не более 4.

Чтобы доказать это утверждение, сначала покажем способ составления уравнения Р(х) = 0, имеющего заранее заданные корни. Пусть требуется составить ур-ние, имеющее корни k1, k2,k3,…kn. Приравняем к нулю следующее произведение скобок:

Составленное ур-ние имеет все требуемые корни и никаких других корней. Действительно, произведение множителей может равняться нулю только в случае, если хотя бы один из множителей нулевой. Поэтому для решения ур-ния

надо каждую скобку приравнять к нулю:

х – k1 = 0 или х – k2 = 0 или х – k3 = 0 или…х – kn = 0

Перенесем второе слагаемое вправо в каждом равенстве и получим:

Чтобы вместо произведения скобок слева стоял многочлен, надо просто раскрыть скобки.

Пример. Составьте уравнение в виде Р(х) = 0, имеющее корни 1, 2, 3 и 4.

Запишем целое ур-ние, имеющее требуемые корни:

(х – 1)(х – 2)(х – 3)(х – 4) = 0

Будем поочередно раскрывать скобки, умножая 1-ую скобку на 2-ую, полученный результат на 3-ю и т.д.:

(х 2 – 3х + 2)(х – 3)(х – 4) = 0

(х 3 – 6х 2 + 11х – 6)(х – 4) = 0

х 4 – 10х 3 + 35х 2 – 50х +24 = 0

Получили ур-ние вида Р(х) = 0. Для проверки вычислений можно подставить в него числа 1, 2, 3 и 4 и убедиться, что они обращают ур-ние в верное равенство.

Ответ: х 4 – 10х 3 + 35х 2 – 50х +24 = 0

Заметим, что в рассмотренном примере, когда мы перемножали многочлены, мы получали новый полином, чья степень увеличивалась на единицу. Мы перемножили 4 скобки (х – k1), а потому получили полином 4 степени. Если бы мы перемножали, скажем, 10 таких скобок, то и многочлен бы получился 10-ой степени. Именно поэтому ур-ние n-ой степени не более n корней.

Действительно, предположим, что какое-то ур-ние n-ой степени имеет хотя бы (n + 1) корень. Обозначим эти корни как k1, k2,k3,…kn, kn+1 и запишем уравнение:

Оно, по определению, равносильно исходному ур-нию, ведь оно имеет тот же набор корней. Слева записаны (n + 1) скобок, поэтому при их раскрытии мы получим полином степени (n + 1). Значит, и исходное ур-ние на самом деле имеет степень n + 1, а не n. Получили противоречие, которое означает, что на самом деле у уравнения n-ой степени не более n корней.

Особо акцентируем внимание на том факте, что если корнями уравнения являются некоторые числа k1, k2,k3,…kn, то этому ур-нию равносильна запись (х – k1)(х – k2)(х – k3)…(х – kn) = 0

Этот факт будет использован далее при решении ур-ний.

Решение уравнений методом подбора корня

Необязательно преобразовывать ур-ние, чтобы найти его корни. Одним из приемов решения целых уравнений является метод подбора корня. Ведь если надо доказать, что какое-то число – это корень ур-ния, достаточно просто подставить это число в ур-ние и получить справедливое равенство!

Пример. Докажите, что корнями ур-ния

х 3 – 2х 2 – х + 2 = 0

являются только числа (– 1), 1 и 2.

Решение. Подставим в ур-ние каждую из предполагаемых корней и получим справедливое равенство. При х = – 1 имеем:

(– 1) 3 – 2(– 1) 2 – (– 1) + 2 = 0

При х = 1 получаем:

1 3 – 2•1 2 – 1 + 2 = 0

Наконец, рассмотрим случай, когда х = 2

2 3 – 2•2 2 – 2 + 2 = 0

Исходное ур-ние имеет 3-ю степень, поэтому у него не более 3 корней. То есть других корней, кроме (– 1), 1 и 2 , у него нет.

Конечно, просто так подобрать корни довольно тяжело. Однако есть некоторые правила, которые помогают в этом. Для начала введем понятие коэффициентов уравнения.

Понятно, что ур-ние Р(х) = 0 в общем виде можно записать так:

Числа а0, а1, а2,…аnи называют коэффициентами уравнений.

Например, для уравнения

5х 4 – 7х 3 + 9х 2 – х + 12 = 0

Если одна из слагаемых «пропущено» в уравнении, то считают, что коэффициент перед ним равен нулю. Например, в ур-нии

нет слагаемого с буквенной частью х 2 . Можно считать, что ур-ние равносильно записи

х 3 + 0х 2 + 2х – 15 = 0

где слагаемое х 2 есть, но перед ним стоит ноль. Тогда коэффициент а1 = 0.

Для обозначения первого коэффициента а0 может использоваться термин старший коэффициент, а для последнего коэффициента аn – термин «свободный член» или «свободный коэффициент».

Изучение коэффициентов ур-ния помогает быстрее подобрать корень. Существует следующая теорема:

Докажем это утверждение. Пусть m – это целый корень уравнения с целыми коэффициентами

Тогда можно подставить туда число m и получить верное равенство:

Поделим обе его части на m и получим

Справа – целое число (ноль), значит, и сумма чисел слева также целая. Все числа а0m n –1 , a1m n –2 , аn–1, очевидно, целые (так как и целыми являются и m, и все коэффициенты). Значит, и число аn/m должно быть целым. Но это возможно лишь в том случае, если m является делителем числа аn.

Из доказанной теоремы следует, что при подборе корней ур-ния достаточно рассматривать только те из них, которые являются делителями свободного члена. При этом следует учитывать и отрицательные делители.

Пример. Найдите целые корни уравнения

2х 4 – х 3 – 9х 2 + 4х + 4 = 0

Решение. Все коэффициенты ур-ния – целые, а потому целый корень должен быть делителем свободного члена, то есть числа 4. Делителями четверки являются 1 и (– 1), 2 и (– 2), 4 и (– 4). Подставляя каждое из этих чисел в ур-ние, получим верные равенства только для чисел 1, 2 и (– 2):

2•1 4 – 1 3 – 9•1 2 + 4•1 + 4 = 2 – 1 – 9 + 4 + 4 = 0

2•2 4 – 2 3 – 9•2 2 + 4•2 + 4 = 32 – 8 – 36 + 8 + 4 = 0

2•(– 2) 4 – (– 2) 3 – 9•(– 2) 2 + 4(– 2) + 4 = 32 + 8 – 36 – 8 + 4 = 0

Таким образом, только эти числа и могут быть целыми корнями ур-ния. Так как мы рассматриваем ур-ние 4 степени, то, возможно, у него помимо 3 целых корней есть ещё один дробный.

Пример. Решите ур-ние

0,5х 3 + 0,5х + 5 = 0

Решение. У ур-ния дробные коэффициенты. Умножим обе части равенства на 2 и получим ур-ние с целыми коэффициентами:

0,5х 3 + 0,5х + 5 = 0

(0,5х 3 + 0,5х + 5)•2 = 0•2

Попытаемся подобрать целый корень ур-ния. Он должен быть делителем свободного члена, то есть десятки. Возможными кандидатами являются числа 1 и (– 1), 2 и (– 2), 5 и (– 5), 10 и (– 10). Подходит только корень х = – 2:

(– 2) 3 + (– 2) + 10 = – 8 – 2 + 10 = 0

Обратим внимание, что в левой части ур-ния стоит сумма функций, возрастающих на всей числовой прямой: у = х 3 и у = х + 10. Значит, и вся левая часть х 3 + х + 10 монотонно возрастает. Это значит, что у ур-ния есть только один корень, и мы его нашли ранее подбором.

Ещё быстрее можно узнать, является ли единица корнем уравнения.

Докажем это. Подставим в ур-ние

значение х = 1. Так как единица в любой степени равна самой единице, то получим:

Получили равенство, в котором слева стоит сумма коэффициентов, в справа – ноль. Если сумма коэффициентов действительно равна нулю, то равенство верное, а, значит, единица является корнем ур-ния.

Пример. Укажите хотя бы 1 корень ур-ния

499х 10 – 9990х 7 + 501х 6 – 10х 5 + 10000х 4 – 1000 = 0

Решение. Заметим, что при сложении коэффициентов ур-ния получается 0:

499 – 9990 + 501 – 10 + 10000 – 1000 = (499 + 501 – 1000) + (10000 – 9990 – 10) = 0 + 0 = 0

Следовательно, единица является его корнем.

Решение уравнений с помощью разложения многочлена на множители

Если в уравнении вида P(x) = 0в левой части удается выполнить разложение многочлена на множители, то дальше каждый из множителей можно отдельно приравнять к нулю.

Пример. Решите ур-ние

Решение. Степень х 4 можно представить как (х 2 ) 2 , а 16 – как 4 2 . Получается, что слева стоит разность квадратов, которую можно разложить на множители по известной формуле:

(х 2 – 4)(х 2 + 4) = 0

Приравняем каждую скобку к нулю и получим два квадратных ур-ния:

х 2 – 4 = 0 или х 2 + 4 = 0

х 2 = 4 или х 2 = – 4

Первое ур-ние имеет два противоположных корня: 2 и (– 2). Второе ур-ние корней не имеет.

Предположим, что у ур-ния 3-ей степени есть 3 корня, и подбором мы нашли один из них. Как найти оставшиеся корни? Здесь помогает процедура, известная как «деление многочленов в столбик». Продемонстрируем ее на примере. Пусть надо решить ур-ние

100х 3 – 210х 2 + 134х – 24 = 0

Можно заметить, сумма всех коэффициентов ур-ния равна нулю:

100 – 210 + 134 – 24 = 0

Следовательно, первый корень – это 1.

Предположим, что у исходного ур-нияР(х) = 0 есть 3 корня, k1, k2и k3. Тогда ему равносильно другое ур-ние

Мы нашли, что первый корень k1 = 1, то есть

Обозначим как P1(x) = 0 ещё одно ур-ние, корнями которого будут только числа k2 и k3. Очевидно, что корнями ур-ния

Будут числа 1, k2 и k3. Его корни совпадают с корнями исходного ур-ния, а потому запишем

(х – 1)•P1(x) = 100х 3 – 210х 2 + 134х – 24

Поделим обе части на (х – 1):

Итак, если «поделить» исходное ур-ние на х – 1, то получим какой-то многочлен Р1(х), причем решением уравнения P1(x) = 0 будут оставшиеся два корня, k2и k3. Деление можно выполнить в столбик. Для этого сначала запишем «делимое» и «делитель», как и при делении чисел:

Смотрим на первое слагаемое делимого. Это 100х 3 . На какой одночлен нужно умножить делитель (х – 1), чтобы получился полином со слагаемым 100х 3 ? Это 100х 2 . Действительно, (х – 1)100х 2 = 100х 3 – 100х 2 . Запишем слагаемое 100х 2 в результат деления, а результат его умножения на делитель, то есть 100х 3 – 100х 2 , вычтем из делимого:

Теперь вычтем из делимого то выражение, которое мы записали под ним. Слагаемые 100х 3 , естественно, сократятся:

(100х 3 – 210х 2 ) – (100х 3 – 100х 2 ) = 100х 3 – 210х 2 – 100х 3 + 100х 2 = – 110х 2

Далее снесем слагаемое 134х вниз:

На какое слагаемое нужно умножить (х – 1), что получился полином со слагаемым (– 110х 2 ). Очевидно, на (– 110х):

(х – 1)(– 110х 2 ) = –110х 2 + 110х

Запишем в поле «ответа» слагаемое (– 110х 2 ), а под делимый многочлен – результат его умножения на (х – 1):

При вычитании из (–110х 2 + 134х) полинома (–110х 2 + 110х) остается 24х. Далее сносим последнее слагаемое делимого многочлена вниз:

Выражение х – 1 нужно умножить на 24, чтобы получить 24х – 24. Запишем в поле «ответа» число 24, а в столбике произведение 24(х –1) = 24х – 24:

В результате в остатке получился ноль. Значит, всё сделано правильно. С помощью деления столбиком мы смогли разложить полином 100х 3 – 210х 2 + 134х – 24 на множители:

100х 3 – 210х 2 + 134х – 24 = (х – 1)(100х 2 – 110х + 24)

Теперь перепишем исходное ур-ние с учетом этого разложения:

100х 3 – 210х 2 + 134х – 24 = 0

(х – 1)(100х 2 – 110х + 24) = 0

Теперь каждую отдельную скобку можно приравнять нулю. Получим ур-ние х – 1 = 0, корень которого, равный единице, мы уже нашли подбором. Приравняв к нулю вторую скобку, получим квадратное ур-ние:

100х 2 – 110х + 24 = 0

D =b 2 – 4ас = (– 110) 2 – 4•100•24 = 12100 – 9600 = 2500

Итак, мы нашли три корня ур-ния: 1; 0,3 и 0,8.

В данном случае мы воспользовались следующим правилом:

Пример. Решите уравнение

2х 3 – 8х 2 + 16 = 0

Решение. Все коэффициенты целые, а потому, если у уравнения есть целый корень, то он должен быть делителем 16. Перечислим эти делители: 1, – 1, 2, – 2, 4, – 4, 8, – 8, 16, – 16. Из всех них подходит только двойка:

2•2 3 – 8•2 2 + 16 = 16 – 32 + 16 = 0

Итак, первый корень равен 2. Это значит, что исходный многочлен можно разложить на множители, один из которых – это (х – 2). Второй множитель найдем делением в столбик. Так как в многочлене 2х 3 – 8х 2 + 16 нет слагаемого с буквенной часть х, то искусственно добавим её:

2х 3 – 8х 2 + 16 = 2х 3 – 8х 2 + 0х + 16

Теперь возможно деление:

Получили, что 2х 3 – 8х 2 + 16 = (х – 2)(2х – 4х – 8)

С учетом этого перепишем исходное ур-ние:

2х 3 – 8х 2 + 16 = 0

(х – 2)(2х – 4х – 8) = 0

х – 2 = 0 или 2х – 4х – 8 = 0

Решим квадратное ур-ние

D =b 2 – 4ас = (– 4) 2 – 4•2•(– 8) = 16 + 64 = 80

В 8 классе мы узнали, что если у квадратного ур-ния ах 2 + bx + c = 0 есть два корня, то многочлен ах 2 + bx + c можно разложить на множители по формуле

где k1 и k2– корни квадратного ур-ния. Оказывается, такое же действие можно выполнять с многочленами и более высоких степеней. В частности, если у кубического ур-ния есть 3 корня k1, k2 и k3, то его можно разложить на множители по формуле

Пример. Разложите на множители многочлен 2х 3 – 4х 2 – 2х + 4.

Решение. Целые корни этого многочлена (если они есть), должны быть делителем четверки. Из всех таких делителей подходят три: 1, (– 1) и 2:

2•1 3 – 4•1 2 – 2•1 + 4 = 2 – 4 – 2 + 4 = 0

2•(– 1) 3 – 4•(– 1) 2 – 2•(– 1) + 4 = – 2 – 4 + 2 + 4 = 0

2•2 3 – 4•2 2 – 2•2 + 4 = 16 – 16 – 4 + 4 = 0

Значит, многочлен можно разложить на множители:

2х 3 – 4х 2 – 2х + 4 = 2(х + 1)(х – 1)(х – 2)

Возникает вопрос – почему перед скобками нужна двойка? Попробуем сначала перемножить скобки без ее использования:

(х + 1)(х – 1)(х – 2) = (х 2 – 1)(х – 2) = х 3 – 2х 2 – х + 2

Получили не тот многочлен, который стоит в условии. Однако ур-ние

х 3 – 2х 2 – х + 2 = 0

имеет те же корни (1, 2 и (– 1)), что и ур-ние

2х 3 – 4х 2 – 2х + 4 = 0

Дело в том, что это равносильные ур-ния, причем второе получено умножением первого на два:

2•(х 3 – 2х 2 – х + 2) = 2х 3 – 4х 2 – 2х + 4

Надо понимать, что хотя ур-ния 2х 3 – 4х 2 – 2х + 4 = 0 и х 3 – 2х 2 – х + 2 = 0, по сути, одинаковы, многочлены в их левой части различны. Заметим, что при перемножении скобок (х – k1), (х – k2), (х – k3) и т.д. всегда будет получаться полином, у которого старший коэффициент равен единице. Поэтому, чтобы учесть этот самый коэффициент, надо домножить произведение скобок на него:

2х 3 – 4х 2 – 2х + 4= 2•(х 3 – 2х 2 – х + 2) = 2(х + 1)(х – 1)(х – 2)

Ответ: 2(х + 1)(х – 1)(х – 2).

Графический метод решения уравнений

Любое ур-ние с одной переменной можно представить в виде равенства

где у(х) и g(x) – некоторые функции от аргумента х.

Построив графики этих функций, можно примерно найти точки их пересечений. Они и будут соответствовать корням уравнения.

Пример. Решите графически уравнение

Решение. Строить график уравнения х 3 – х 2 – 1 = 0 довольно сложно, поэтому перенесем слагаемое (– х 2 – 1) вправо:

Построим графики у = х 3 и у = х 2 + 1 (второй можно получить переносом параболы у = х 2 на единицу вверх):

Видно, они пересекаются в точке, примерно соответствующей значению х ≈ 1,4. Если построить графики уравнения более точно (с помощью компьютера), то можно найти, что х ≈ 1,46557.

Ответ: х ≈ 1,46557

Конечно, графический метод решения уравнений не является абсолютно точным, однако он помогает быстро найти примерное положение корня. Также с его помощью можно определить количество корней уравнения. В рассмотренном примере был только 1 корень.

Пример. Определите количество корней уравнений

б) х 3 – 2х + 0,5 = 0

Решение. Перенесем два последних слагаемых вправо в каждом ур-нии:

Построим графики функций у = х 3 , у = х + 3 и у = 2х – 0,5:

Видно, что прямая у = х + 3 пересекает график у = х 3 в одной точке, поэтому у первого ур-ния будет 1 решение.Прямая у = 2х – 0,5 пересекает кубическую параболу в трех точках, а потому у второго ур-ния 3 корня.

Ответ: а) один корень; б) три корня.

Решение дробно-рациональных уравнений

До этого мы рассматривали только целые ур-ния, где переменная НЕ находится в знаменателе какого-нибудь выражения. Однако, если в ур-нии есть выр-ние, содержащее переменную в знаменателе, или присутствует деление на выр-ние с переменной, то его называют дробно-рациональным уравнением.

Приведем несколько примеров ур-ний, считающихся дробно-рациональными:

С помощью равносильных преобразований любое дробно-рациональное ур-ние возможно записать в виде отношения двух полиномов:

Дробь равна нулю лишь тогда, когда ее числитель равен нулю, а знаменатель – не равен. Таким образом, нужно сначала решить ур-ние Р(х) = 0 и потом проверить, что полученные корни не обращают полином Q(x) в ноль.

Обычно для решения дробно-рациональных уравнений используют такой алгоритм:

1) Приводят все дроби к единому знаменателю, умножают на него ур-ние и получают целое ур-ние.

2) Решают полученное целое ур-ние.

3) Исключают из числа корней те, которые обращают знаменатель хотя бы одной из дробей в ноль.

Пример. Решите ур-ние

Умножим обе части равенства на знаменатель 1-ой дроби:

2х 2 – 3х – 2 = х 2 (х – 2)

Раскроем скобки и перенесем все слагаемые в одну сторону:

2х 2 – 3х – 2 = х 3 – 2х 2

х 3 – 2х 2 – 2х 2 + 3х + 2 = 0

х 3 – 4х 2 + 3х + 2 = 0

У ур-ния могут быть только те целые корни, которые являются делителями двойки. Из кандидатов 1, – 1, 2 и – 2 подходит только двойка:

2 3 – 4•2 2 + 3•2 + 2 = 8 – 16 + 6 + 2 = 0

Нашли один корень, а потому исходный многочлен можно поделить в столбик на (х – 2):

Получили, что х 3 – 4х 2 + 3х + 2 = (х – 2)(х 2 – 2х – 1)

Тогда ур-ние примет вид:

(х – 2)(х 2 – 2х – 1) = 0

х – 2 = 0 или х 2 – 2х – 1 = 0

Решим квадратное ур-ние:

D =b 2 – 4ас = (– 2) 2 – 4•1•(– 1) = 4 + 4 = 8

Мы нашли все 3 корня кубического ур-ния. Теперь надо проверить, не обращают ли какие-нибудь из них знаменатели дроби в исходном ур-нии

в ноль. Очевидно, что при х = 2 знаменатель (х – 2) превратится в ноль:

Это значит, что этот корень надо исключить из списка решений. Такой корень называют посторонним корнем ур-ния.

Также ясно, что два остальных корня не обращают знаменатель в ноль, а потому они НЕ должны быть исключены из ответа:

Пример. Найдите все корни ур-ния

Решение. Если сразу привести выражение слева к общему знаменателю 4(х 2 + х – 2)(х 2 + х – 20), то получится очень длинное и неудобное выражение. Однако знаменатели довольно схожи, поэтому можно провести замену. Обозначим х 2 + х как у:

Тогда уравнение примет вид

Приведем дроби к общему знаменателю 4(у – 2)(у – 20):

Знаменатель должен равняться нулю:

4(у – 20) + 28(у – 2) + (у – 2)(у – 20) = 0

4у – 80 + 28у – 56 + у 2 – 20у – 2у + 40 = 0

у 2 + 10у – 96 = 0

Решаем квадратное ур-ние:

D =b 2 – 4ас = (10) 2 – 4•1•(– 96) = 100 + 384 = 484

Получили, что у1 = – 16, а у2 = 6. Произведем обратную замену:

х 2 + х = – 16 или х 2 + х = 6

х 2 + х + 16 = 0 или х 2 + х – 6 = 0

Дискриминант 1-ого ур-ния отрицателен:

D =b 2 – 4ас = (1) 2 – 4•1•(16) = 1– 64 = – 63

А потому оно не имеет решений. Решим 2-ое ур-ние:

D = b 2 – 4ас = (1) 2 – 4•1•(– 6) = 1+ 24 = 25

Нашли два корня: 2 и (– 3). Осталось проверить, не обращают ли они знаменатели дробей в ур-нии

в ноль. Подстановкой можно убедиться, что не обращают.

При решении дробно-рациональных ур-ний может использоваться и графический метод.

Пример. Сколько корней имеет уравнение

Решение. Построим графики функций у = х 2 – 4 и у = 2/х:

Видно, что графики пересекаются в 3 точках, поэтому ур-ние имеет 3 корня.

ПОНЯТИЕ ЦЕЛОГО УРАВНЕНИЯ И ЕГО СТЕПЕНИ

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.


Понятие целого уравнения и его степени

Цели: ввести понятие целого уравнения и его степени; формировать умение определять степень целого уравнения и решать целые уравнения не выше второй степени.

I. Организационный момент.

II. Устная работа.

Определите, сколько корней имеет уравнение:

а) 2 х + 1 = 0; д) 3 х + 1 = 5 + 3 х ;

б) х 2 – 5 = 0; е) х 2 + 2 х + 1 = 0;

в) х 5 + 1 = 0; ж) х 2 + х + 10 = 0;

г) х 6 + 2 = 0; з) 1 – 4 х = 1 – 4 х .

III. Объяснение нового материала.

На этом уроке достаточно ввести понятие целого уравнения и его степени; рассмотреть примеры приведения целого уравнения к виду Р ( х ) = 0, где Р ( х ) – многочлен; обратиться к решению целых уравнений первой и второй степени. Вопрос о методах решения целых уравнений выше второй степени целесообразно изучить на следующем уроке.

Объяснение проводится по следующей с х е м е:

1. В в е д е н и е п о н я т и я целого уравнения.

После формирования определения данного понятия необходимо дать учащимся задание на распознавание целых уравнений.

З а д а н и е. Какие из следующих уравнений являются целыми? Ответ объясните.

а) х 4 + 2 х 3 – 7 = 0; г) – 5 х 3 = 0;

б) 4 х 10 = 0,7 х 8 ; д) ;

в) ( х – 1) (3 х 2 + 5) = х 4 + 2; е) = 0.

2. В в е д е н и е п о н я т и я степени целого уравнения.

После введения данного понятия дать учащимся задание на определение степени целого уравнения.

З а д а н и е. Какова степень уравнения:

а) 2 х 5 + 4 х – 3 = 0; г) – 5 х = 7;

б) х 7 + 5 х = 0; д) (2 х + 1) ( х – 7) – х = 0;

в) х 11 = х 3 ; е) 5 х 2 – 4 х 2 (1 – х ) = 0?

3. Р а с с м о т р е н и е р е ш е н и я линейных и квадратных уравнений как целых уравнений первой и второй степени соответственно.

Необходимо, чтобы учащиеся осознали следующее:

1) изученные ранее линейные и квадратные уравнения являются целыми уравнениями первой и второй степени соответственно;

2) уравнение первой степени может иметь не более одного корня;

3) уравнение второй степени может иметь не более двух корней.

IV. Формирование умений и навыков.

На этом уроке учащиеся выполняют задания на определение степени целого уравнения и приведение целых уравнений к виду Р ( х ) = 0. Для решения нужно предлагать им уравнения не выше второй степени.

1. Приведите уравнение к виду Р ( х ) = 0 и определите его степень:

а) 2 х (1 – 3 х ) + ( х + 4) ( х 2 – 1) = 0;

б) ( х 3 – 2) (1 + 3 х 2 ) – 3 ( х 4 – 1) = 5;

2. Какие из следующих чисел –3; –2; –1; 0; 1; 2; 3 являются корнями уравнения:

в) х 4 – 5 х 2 + 4 = 0?

3. № 266 (а, в), № 267 (б, г).

5 х 6 + 6 х 4 + х 2 + 4 = 0.

Выражения 5 х 6 , 6 х 4 и х 2 могут принимать только неотрицательные значения при любых значениях х . Поэтому выражение 5 х 6 + 6 х 4 + х 2 + 4 при любых значениях х принимает только положительные значения, а значит, не может быть равно нулю, то есть уравнение 5 х 6 + 6 х 4 + х 2 + 4 = 0 не имеет решений.

Д о п о л н и т е л ь н о: № 270.

Пусть ребро куба равно х см, тогда его объем равен х 3 см 3 . Если увеличить ребро куба на 3 см, то оно станет равно ( х + 3) см, а объем куба будет равен ( х + 3) 3 см 3 .

Составим и решим уравнение:

х 3 + 9 х 2 + 27 х + 27 = х 3 + 513;

9 х 2 + 27 х – 486 = 0;

х = – 9 – не удовлетворяет условию задачи.

В о п р о с ы у ч а щ и м с я:

– Какое уравнение называется целым?

– Что такое степень целого уравнения?

– Какова степень уравнения 2 х 3 – 5 + х 6 = 0?

– Сколько корней может иметь целое уравнение первой степени? второй степени?

Домашнее задание: № 266 (б ( 1 вариант), г(2 вариант)), № 267 (а, в), № 269.


источники:

http://100urokov.ru/predmety/2-urok-uravneniya-s-odnoj-peremennoj

http://infourok.ru/ponyatie-celogo-uravneniya-i-ego-stepeni-730620.html