Что означает знак минус в уравнении теплопроводности

Лекция 4. Вывод уравнения теплопроводности

При построении математической модели распространения тепла в стержне сделаем следующие предположения:
1) стержень сделан из однородного проводящего материала с плотностью ρ;
2) боковая поверхность стержня теплоизолирована, то есть тепло может распространяться только вдоль оси ОХ;
3) стержень тонкий — это значит, что температура во всех точках любого поперечного сечения стержня одна и та же.

Рассмотрим часть стержня на отрезке [х, х + ∆х] (см. рис. 6) и воспользуемся законом сохранения количества тепла:

Общее количество тепла на отрезке [х, х + ∆х] = полному количеству тепла, прошедшему через границы + полное количество тепла, образованного внутренними источниками.

Общее количество тепла, которое необходимо сообщить участку стержня, чтобы повысить его температуру на ∆U, вычисляется по формуле: ∆Q= CρS∆x∆U, где С — удельная теплоемкость материала ( = количеству тепла, которое нужно сообщить 1 кг вещества, чтобы поднять его температуру на 1°), S — площадь поперечного сечения.

Количество тепла, прошедшее через левый конец участка стержня за время ∆t (тепловой поток) вычисляется по формуле: Q1 = -kSUx(x, t)∆t, где k — коэффициент теплопроводности материала ( = количеству тепла, протекающего в секунду через стержень единичной длины и единичной площади поперечного сечения при разности температур на противоположных концах, равной 1°). В этой формуле особого пояснения требует знак минус. Дело в том, что поток считается положительным, если он направлен в сторону увеличения х, а это, в свою очередь, означает, что слева от точки х температура больше, чем справа, то есть Ux CpS∆x∆U = kSUx(x + ∆х, t) ∆t — kSUx(x, t)∆t.

Если это равенство поделить на S∆x∆t и устремить ∆х и ∆t к нулю, то будем иметь:

Отсюда уравнение теплопроводности имеет вид

Ut = a 2 Uxx,
где — коэффициент температуропроводности.

В случае, когда внутри стержня имеются источники тепла, непрерывно распределенные с плотностью q(x,t), получится неоднородное уравнение теплопроводности

Начальные условия и граничные условия.

Для уравнения теплопроводности задается только одно начальное условие U|t=0 = φ(х) (или в другой записи U(x,0) = φ(х)) и физически оно означает, что начальное распределение температуры стержня имеет вид φ(х). Для уравнений теплопроводности на плоскости или в пространстве начальное условие имеет такой же вид, только функция φ будет зависеть, соответственно, от двух или трех переменных.

Граничные условия в случае уравнения теплопроводности имеют такой же вид, как и для волнового уравнения, но физический смысл их уже иной. Условия первого рода (5) означают, что на концах стержня задана температура. Если она не изменяется со временем, то g1(t) ≡ Т1 и g2(t) ≡ Т2, где Т1 и Т2 — постоянные. Если концы поддерживаются все время при нулевой температуре, то Т1= Т2 = 0 и условия будут однородными. Граничные условия второго рода (6) определяют тепловой поток на концах стержня. В частности, если g1(t) = g2(t) = 0, то условия становятся однородными. Физически они означают, что через концы не происходит теплообмен с внешней средой (эти условия еще называют условиями теплоизоляции концов). Наконец, граничные условия третьего рода (7) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона (напомним, что при выводе уравнения теплопроводности мы считали боковую поверхность теплоизолированной). Правда, в случае уравнения теплопроводности условия (7) записываются немного по-другому:

Физический закон теплообмена со средой (закон Ньютона) состоит в том, что поток тепла через единицу поверхности в единицу времени пропорционален разности температур тела и окружающей среды. Таким образом, для левого конца стержня он равен Здесь h1 > 0 — коэффициент теплообмена с окружающей средой, g1(t) — температура окружающей среды на левом конце. Знак минус поставлен в формуле по той же причине, что и при выводе уравнения теплопроводности. С другой стороны, в силу теплопроводности материала поток тепла через этот же конец равен Применив закон сохранения количества тепла, получим:

Аналогично получается условие (14) на правом конце стержня, только постоянная λ2 может быть другой, так как, вообще говоря, среды, окружающие левый и правый конец, бывают разные.

Граничные условия (14) являются более общими по сравнению с условиями первого и второго рода. Если предположить, что через какой-либо конец не происходит теплообмена со средой (то есть коэффициент теплообмена равен нулю), то получится условие второго рода. В другом случае предположим, что коэффициент теплообмена, например h1, очень большой.

Перепишем условие (14) при х = 0 в виде и устремим . В результате будем иметь условие первого рода:

Аналогично формулируются граничные условия и для большего числа переменных. Для задачи о распространении тепла в плоской пластине условие означает, что температура на ее краях поддерживается нулевой. Точно так же, условия и внешне очень похожи, но в первом случае оно означает, что рассматривается плоская пластина и края ее теплоизолированы, а во втором случае оно означает, что рассматривается задача о распространении тепла в теле и поверхность его теплоизолирована.

Решение первой начально-краевой задачи для уравнения теплопроводности.

Рассмотрим однородную первую начально-краевую задачу для уравнения теплопроводности:

Найти решение уравнения

удолетворяющее граничным условиям

и начальному условию

Решим эту задачу методом Фурье.

Шаг 1. Будем искать решения уравнения (15) в виде U(x,t) = X(x)T(t).

Найдем частные производные:

Подставим эти производные в уравнение и разделим переменные:

По основной лемме получим

Теперь можно решить каждое из этих обыкновенных дифференциальных уравнений. Обратим внимание на то, что используя граничные условия (16), можно искать не общее решение уравнения б), а частные решения, удолетворяющие соответствующим граничным условиям:

Шаг 2. Решим задачу Штурма-Лиувилля

Эта задача совпадает с задачей Штурма-Лиувилля, рассмотренной в лекции 3. Напомним, что собственные значения и собственные функции этой задачи существуют только при λ>0.

Собственные значения равны

Собственные функции равны (См. решение задачи)

Шаг 3. Подставим собственные значения в уравнение а) и решим его:

Шаг 4. Выпишем частные решения уравнения (15):

В силу линейности и однородности уравнения (15) их линейная комбинация

Шаг 5. Определим коэффициенты An в (19), используя начальное условие (17):

Приходим к тому, что начальная функция φ(x) разлагается в ряд Фурье по собственным функциям задачи Штурма-Лиувилля. По теореме Стеклова такое разложение возможно для функций, удовлетворяющих граничным условиям и имеющих непрерывные производные второго порядка. Коэффициенты Фурье находятся по формулам

Вычислив эти коэффициенты для конкретной начальной функции φ(x) и подставив их значения в формулу (19), мы тем самым получим решение задачи (15), (16), (17).

Замечание. Используя формулу (19), можно также, как в лекции 3, получить решение первой начально-краевой задачи для уравнения Ut = a 2 Uxx. Оно будет иметь вид

где

Закон Фурье – основной закон теплопроводности.

В 1807 году французский ученый Фурье доказал экспериментально, что во всякой точке тела (вещества) в процессе теплопроводности присуща однозначная взаимосвязь между тепловым потоком и градиентом температуры:

,

где Qтепловой поток, выражается в Вт;

grad(T)градиент температурного поля (совокупности числовых значений температуры в разнообразных местах системы в выбранный момент времени), единицы измерения К/м;

S – площадь поверхности теплообмена, м 2 ;

Градиент температуры получится характеризовать в виде векторной суммы составляющих по осям декартовых координат:

,

где i, j, kортогональные между собой единичные векторы, нацеленные по координатным осям.

Значит, данный закон устанавливает величину теплового потока при переносе тепла посредством теплопроводности.

Закон Фурье для поверхностной плотности теплового потока принимает вид:

.

Знак « минус» обозначает, что векторы теплового потока и градиента температуры разнонаправленные. Следует понимать, что теплота передается в направлении спада температуры.

И все же не лишним будет указать, что закон Фурье не принимает в расчет инерционность процесса теплопроводности, иначе говоря, в представленной модели колебание температуры в любой точке мгновенно распространяется на всё тело. Закон Фурье некорректно применять для характеристики высокочастотных процессов таких как, к примеру, распространение ультразвука, ударной волны.

Уравнения теплопроводности и температурного поля

Количество тепла Q1 (в ккал), распространяющееся путем теплопроводности в направлении х, в течение единицы времени составит:

Минус в выражении (1.4) означает, что для получения положительной величины Q1 температура в направлении х должна уменьшаться, а не возрастать. Величина dt/dx, называемая градиентом температуры, выражается в град/м; λ — представляет коэффициент теплопроводности материала в ккал/м·ч·град.

При неустановившихся условиях количество тепла Q1, распространяющееся в направлении х, изменяется, что связано с поглощением или отдачей тепла частицами материальной среды при изменении их температуры с течением времени т (т. е. наличии величины dt/dx≠0.

Изменение потока тепла dQ1/dx пропорционально теплоемкости материала сγ (с — удельная теплоемкость в ккал/кг·град; γ — объемный вес материала в кг/мг); тогда

Знак минус в правой части уравнения означает, что повышение температуры материала связано с поглощением им тепла и соответствующим уменьшением теплового потока Q1.

Величина изменения потока тепла Q1 в направлении х может быть получена также дифференцированием уравнения (1.4), т. е.

При отсутствии внутренних источников или стоков тепла, изменение величины теплового потока связано только с поглощением тепла материалом, и выражения (1,5) и (1.6) должны быть равны. Из этого равенства выводится дифференциальное уравнение теплопроводности при одномерном распространении тепла в направлении х, а именно:

Это выражение известно как дифференциальное уравнение Фурье. Величина λ/cγ называется коэффициентом температуропроводности материала, имеет кинематическую размерность, в которую не входят измерители массы и энергии, и характеризует скорость перераспределения температуры, выражаемую обычно в м 2 /ч или см 2 /сут при нагреве или охлаждении материальной среды.

Материалы и конструкции с высоким коэффициентом температуропроводности быстро нагреваются или охлаждаются до температуры, соответствующей равновесному состоянию с окружающей средой.

В самом общем виде, при неустановившемся распространении тепла по всем трем осям координат, дифференциальное уравнение теплопроводности приобретает трехмерный вид:

Путемч интегрирования одномерного (1.7), двухмерного или трехмерного уравнения теплопроводности могут быть получены любые конкретные решения, раскрывающие закономерности распространения тепла в материальных средах, в частности, ограждающих конструкциях зданий.

Чтобы получить из множества возможных конкретное решение, соответствующее определенному рассматриваемому процессу распространения тепла, необходимо располагать дополнительными условиями, не содержащимися в исходном дифференциальном уравнении. Эти дополнительные условия, которые вместе с исходным уравнением однозначно определяют все особенности рассматриваемого процесса, называются условиями однозначности 1 .

Условия однозначности разделяются на временные (характеризующие рассматриваемый физический процесс во времени) и пространственные, относящиеся к поверхностям, ограничивающим изучаемый объект или конструкцию, и особенностям физического процесса, происходящего на этих граничных поверхностях.

Различают три вида граничных условий:

  • 1) граничное условие I рода, устанавливающее распределение температуры на поверхности и ее изменения во времени;
  • 2) граничное условие II рода, устанавливающее величину потока тепла, проходящего через поверхность, и его изменения во времени;
  • 3) граничное условие III рода, определяющее температуру окружающей среды и закон теплообмена между поверхностью и этой средой.

В строительной теплофизике обычно задаются граничные условия III рода, устанавливаемые значениями температуры среды t и коэффициентов теплообмена α 2 .

При рассмотрении теплопередачи в однородной среде и в установившихся условиях (когда dt/dτ=0), временные условия исключаются и значение имеют только пространственные.

В этих случаях, поскольку а≠0, уравнение (1.7а) приобретает вид:

Уравнение относится к температурному полю в установившихся условиях. Выражение (1.8) известно как уравнение Лапласа. Физический смысл этого уравнения состоит в том, что сумма изменений количеств тепла, поступающего к любой рассматриваемой точке конструкции, равна нулю. Следовательно, температуры ее неизменны и имеют установившиеся значения, отвечающие постоянным условиям воздействий внешней среды, окружающей конструкцию. При практических расчетах температурного поля проектируемых конструкций на основе уравнения (1.8) расчетные температуры внешней среды принимаются соответствующими возможности завершения процесса предельного охлаждения рассматриваемой конструкции. Этот процесс происходит постепенно и требует определенного времени: незначительного для легких конструкций и длительного — для массивных, поэтому расчетные значения температуры наружного воздуха в наиболее холодные зимние периоды зависят от степени массивности конструкции и связаны с возможностью более или менее длительной стабилизации теплового состояния во времени.

Для многих практических случаев достаточно исследования плоского температурного поля (в плане или разрезе конструкции). Для двумерных условий уравнение (1.8) имеет вид:

Исследование на основе уравнения (1.8а) температурных полей неоднородных в теплофизическом отношении облегченных конструкций (панелей с контурными ребрами, сопряжений крупных элементов ограждающих конструкций и т. д.) имеет весьма важное значение при проектировании индустриальных конструкций зданий, особенно в достаточно суровых климатических условиях, когда низкие температуры наружного воздуха длительны во времени и вызывают полное охлаждение, для которого характерно неизменное установившееся распределение предельно низких температур.

Порядок проведения подобных практических расчетов и применение для этих целей счетно-решающих устройств типа электроинтегратора, изложены далее в гл. IV.

Дифференциальное уравнение Фурье (1.7) в обобщающем смысле является уравнением нестационарного поля любого потенциала переноса (в данном случае — поля потенциала переноса тепла, т. е. температуры). С определенными ограничениями это уравнение может быть использовано и для изучения процессов влагообмена, происходящих в материальных системах при неизменной температуре.

Если рассматривать какую-либо материальную систему, например, ограждающую конструкцию, выполненную из влажного капиллярно-пористого материала и находящуюся в изотермической воздушной среде 3 , то за потенциал переноса влаги может быть принято влагосодержание материала (со, г/кг). Уравнение (1.7), записанное применительно к исследованию одномерного поля потенциала переноса влаги называют уравнением влагопроводности. Оно имеет вид:

где ω — влагосодержание материала (часто выражаемое через весовую влажность материала); аm — коэффициент нестационарной влагопроводности 4 , зависящий от природы материала и его влажностного состояния.

Уравнение влагопроводности, в частности, используется для обоснования простейших приближенных сравнительных расчетов длительности естественной сушки ограждающих конструкций из капиллярно-пористых материалов.

Примечания

1. Иногда условия однозначности называют краевыми условиями.

2. В теплотехнической литературе эти коэффициенты часто называют коэффициентами теплоотдачи, имея в виду особенности теплообмена материальных систем нагретых выше температуры окружающей среды.

3. То есть в среде с неизменной постоянной температурой.

4. Аналог коэффициента температуропроводности:


источники:

http://www.calc.ru/Zakon-Furye-Osnovnoy-Zakon-Teploprovodnosti.html

http://www.arhplan.ru/reference/thermophysics/uravneniya-teploprovodnosti-i-temperaturnogo-polya