Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса
Простые равенства с неизвестными — первоначальный этап знакомства с линейными уравнениями. Примеры с объяснением для 6 класса основываются не только на решении последних, но и на базовых определениях, а также использования формул сокращенного умножения для понижения степени до единицы. Математики рекомендуют начать с теории, а затем перейти к ее практическому применению.
Общие сведения
Уравнение — совокупность чисел и переменных. Иными словами, тождеством, содержащим неизвестные величины, называется математическая запись, в которой следует определить значения переменных, превращающих это выражение в истинное. Например, переменная t в выражении 2t=6 эквивалентна 3, поскольку 2*3=6.
Линейное — тождество, в котором максимальный показатель степени при неизвестной величине всегда эквивалентен единице.
В математике существует термин «корень уравнения». Он означает, что для решения равенства необходимо найти все допустимые значения, превращающие его в истинное тождество. Далее следует разобрать классификацию линейных выражений с переменными.
Классификация уравнений
Прежде чем рассматривать примеры уравнений по алгебре в 7 классе (изучаются подробнее, чем в 6-м), необходимо разобрать их классификацию, поскольку она влияет на алгоритм нахождения корней. Они бывают трех типов:
Первый вид — обыкновенные приведенные линейные уравнения, состоящие из числовых величин и переменных с единичным степенным показателем. Они являются наиболее распространенными не только в математике и физике, но и в других дисциплинах с физико-математическим уклоном. Графиком их функции является прямая линия, которую также называют прямо пропорциональной зависимостью.
Ко второму типу относятся любые многочлены линейного типа, имеющие переменную, а также некоторый параметр. Последний влияет на решение и нахождение корней. Обычно он задается на начальном этапе решения, но бывают и исключения. В последнем случае необходимо указывать диапазон допустимых значений параметра.
Суть решения второго вида уравнений — предотвратить превращение тождества в пустое множество. Для этой цели требуется исключить при помощи записи в виде неравенства все ложные значения параметра. Выражения с параметром применяются в программировании при написании и разработке различных алгоритмов. Кроме того, их можно встретить при описании физических процессов и явлений.
Последний тип — выражения высшей степени, которые при помощи математических преобразований превращаются в первый или второй тип. Для их решения необходимо знать формулы сокращенного умножения, понижающие степень до единицы, а также навык раскрытия скобок и приведения подобных компонентов.
Обыкновенные тождества
Простое линейное уравнение записывается в таком виде: At+Bt+Ct+As+Bs+Cs=0. Некоторых коэффициентов может и не быть. Кроме того, тождество может записываться в виде выражения, включающего в свой состав скобки. Алгоритм решения имеет следующий вид:
Следует отметить, что также составляются примеры линейных уравнений для тренировки в 7 классе. Необходимо разобрать решение одного из них «7 (t-1)(t+1)-7t (t-1)=8». Решать его нужно по вышеописанному алгоритму:
Последний пункт реализации методики свидетельствует о том, что корень тождества найден правильно. Далее нужно рассмотреть выражения с параметром.
Выражения с параметром
Уравнения с некоторым параметром решаются немного по другой методике. Ее суть заключается в нахождении корня, дополнительно зависящего от некоторого значения. Алгоритм имеет следующий вид:
Реализацию методики необходимо рассмотреть на практическом примере «t-2+pt=0», где р — параметр тождества. Решать выражение нужно по такому алгоритму:
Иногда в некоторых задачах нет необходимости подставлять значение параметра. В этом случае следует просто записать формулу корня, указав допустимый интервал (диапазон) последнего. Например, в вышеописанном примере решение записывается следующим образом: t=2/(1+p)
Понижение степени
Некоторые уравнения представлены степенью при неизвестной, превышающую единицу. К ним относятся следующие виды: квадратные, кубические и бикубические. Каждый из трех видов имеет собственный алгоритм нахождения корней.
Однако некоторые из них можно свести к линейному типу. Для этого применяется метод разложения на множители. Он подразумевает алгебраические соотношения, при помощи которых выражение легко записывается в обыкновенной линейной форме. К ним относятся следующие:
Первая и вторая формула называется квадратом суммы или разности соответственно. Третья — разность квадратов. Кроме того, бывают случаи, при которых невозможно применить эти тождества. Для этого требуется выносить общий множитель за скобки, тем самым понижая степень. Для нахождения корней существует определенная методика:
Реализация алгоритма нужно проверить на практическом примере, т. е. следует решить уравнение «3t^2-3=0». Найти его корни можно, воспользовавшись вышеописанной методикой:
Кубические и бикубические должны сводиться к квадратным, а затем преобразовываться в линейные, поскольку формулы кубов суммы и разности, при их разложении на множители, дают вторую степень. Однако существует еще один частный случай, о котором не упоминалось при классификации линейных выражений с неизвестными — системы уравнений.
Системы линейного типа
Система уравнений — совокупность выражений с неизвестными, которые имеют общие решения. Методика для вычисления корней имеет следующий вид:
Однако для практического применения вышеописанной методики необходимо разобрать систему уравнений, состоящую из двух тождеств (5t-2s=1 и 4t^2-s^2=0). Решать ее нужно по вышеописанной методике:
В третьем пункте математики рекомендуют разложить тождество на множители, поскольку необходимо всегда понижать степень при неизвестной величине. Во всех трех случаях описаны простые примеры, которые позволяют перейти к более сложным заданиям.
Следует отметить, что еще одним методом решения системы уравнений считается построение графиков функций, входящих в ее состав. Методика поиска решений сводится к простым шагам, которые можно править относительно предыдущего алгоритма таким образом:
В последнем пункте методики находятся корни системы уравнений. Далее рекомендуется их подставить в исходные выражения для проверки.
Таким образом, линейные уравнения применяются в различных физико-математических дисциплинах и прикладных науках. Для их решения существуют определенные методики, позволяющие выполнить эту операцию за короткий промежуток времени и не допустить ошибок.
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = – 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Алгоритмы решения простых и усложнённых уравнений в начальной школе.
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Решить уравнение – найти его корень:
– решается уравнение по микро шагам , одна строка – одно действие делаем
– записывается строго в столбик
– в каждой строке только один знак = так как получаться должны равенства
– в каждой строке до проверки есть одно неизвестное , записанное буквой
– после нахождения корня уравнения эту строку подчеркнуть для проверки
– в части проверки не пишется неизвестное, вместо него пишут число – корень уравнения
Алгоритм решения простого уравнения :
1. Подчеркнуть неизвестное и вспомнить как называется компонент действия, на месте которого находится неизвестное число.
2. Вспомнить правило нахождения этого компонента.
3. Решить простое уравнение по озвученному правилу в одно действие.
4. Выполнить проверку правильности решения – переписать всё уравнение, подставив вместо неизвестного корень уравнения.
5. Записать ответ проверки – посчитать всё в левой части, записать равно под равно, и полученное число левой части написать перед равно. Оно должно получиться таким же, как и число в правой части уравнения.
1. Подчеркнуть неизвестное и вспомнить как называется компонент действия, на месте которого находится неизвестное число
Неизвестен второй множитель.
2. Вспомнить правило нахождения этого компонента.
Чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.
3. Решить простое уравнение по озвученному правилу в одно действие.
4. Выполнить проверку правильности решения – переписать всё уравнение, подставив вместо неизвестного корень уравнения.
5. Записать ответ проверки – посчитать всё в левой части, записать равно под равно, и полученное число левой части написать перед равно. Оно должно получиться таким же, как и число в правой части уравнения.
Алгоритм решения усложнённого уравнения :
1. Найти и сразу упростить в выражении то, что можно – посчитать то действие, что сразу легко решается без дополнительных правил.
2. Подчеркнуть неизвестное и вспомнить как называется компонент действия, на месте которого находится неизвестное число
3. Вспомнить правило нахождения этого компонента.
4. Решить простое уравнение по озвученному правилу в одно действие.
5. Выполнить проверку правильности решения – переписать всё уравнение, подставив вместо неизвестного корень уравнения.
6. Записать ответ проверки – посчитать всё в левой части, записать равно под равно, и полученное число левой части написать перед равно. Посчитать всё в правой части и записать после равно полученное число Оба числа должны получиться равными.
1. Найти и сразу упростить в выражении то, что можно – посчитать то действие, что сразу легко решается без дополнительных правил.
Х + 500 × 3 = 2000 могу 500 ×3, получу 1500
Получим простое уравнение :
2. Подчеркнуть неизвестное и вспомнить как называется компонент действия, на месте которого находится неизвестное число.
Х + 1500 = 2000 неизвестное стоит на месте 1-го слагаемого
3. Вспомнить правило нахождения этого компонента.
Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое.
4. Решить простое уравнение по озвученному правилу в одно действие.
5. Выполнить проверку правильности решения – переписать всё уравнение, подставив вместо неизвестного корень уравнения.
500 + 500 × 3 = 2000
6. Записать ответ проверки – посчитать всё в левой части, записать равно под равно, и полученное число левой части написать перед равно. Посчитать всё в правой части и записать после равно полученное число Оба числа должны получиться равными.
Х + 500 × 3 = 2000
500 + 500 × 3 = 2000
Алгоритм решения сложного уравнения :
1. Найти и сразу упростить в выражении то, что можно – посчитать то действие, что сразу легко решается без дополнительных правил.(если есть)
2. Разбить выражения, записанные в одной или обеих частях уравнения, на части – расставить порядок действий. Определить неизвестный компонент по последнему действию и подчеркнуть его.
3. Вспомнить правило нахождения данного компонента, найти число по правилу – узнать чему будет равна часть с неизвестным.
4. Найти и вспомнить как называется новый компонент – неизвестное число в полученном простом уравнении
5. Решить полученное простое уравнение.
6. Выполнить проверку правильности решения – переписать всё уравнение, подставив вместо неизвестного корень уравнения.
7. Записать ответ проверки – посчитать всё в правой и левой части, записать равно под равно, должно получиться одинаковое число в правой и левой части.
1. Найти и сразу упростить в выражении то, что можно – посчитать то действие, что сразу легко решается без дополнительных правил.(если есть)
Пропускаем – нельзя упростить.
2. Разбить выражения, записанные в одной или обеих частях уравнения, на части – расставить порядок действий. Определить где находится неизвестный компонент –всё до последнего действия и подчеркнуть его.
3. Вспомнить правило нахождения данного компонента, найти число по правилу – узнать чему будет равна часть с неизвестным.
Неизвестно уменьшаемое, чтобы найти неизвестное уменьшаемое надо к вычитаемому прибавить разность.
4. Найти и вспомнить как называется новый компонент – неизвестное число в полученном уравнении
получили простое уравнение, такое уравнение мы умеем решать
Неизвестно слагаемое, чтобы найти неизвестное слагаемое надо из суммы вычесть известное слагаемое.
5. Решить полученное простое уравнение.
6. Выполнить проверку правильности решения – переписать всё уравнение, подставив вместо неизвестного корень уравнения.
( 109 + 29) – 48 = 90
7. Записать ответ проверки – посчитать всё в правой и левой части, записать равно под равно, должно получиться одинаковое число в правой и левой части.
http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij
http://infourok.ru/algoritmi-resheniya-prostih-i-uslozhnyonnih-uravneniy-v-nachalnoy-shkole-3158619.html