Что такое поликонденсация запишите уравнение

Высокомолекулярные соединения. Реакции полимеризации и поликонденсации

Содержание:

Высокомолекулярные соединения – это полимеры, у которых молекулярная масса больше 10000. Полимер – это соединение, состоящее из большого числа звеньев – мономеров (низкомолекулярных веществ), которые повторяются в полимерной цепи большое количество раз .

Число n показывает, из скольких мономеров состоит полимер, и называется степенью полимеризации. Молекулярная масса иногда достигает нескольких миллионов.

Высокомолекулярные соединения классифицируются по характеру мономеров:

  • гомополимеры – вещества, состоящие из одинаковых мономеров. Например, пропилен CH2=CH-CH3 – это мономер полипропилена (-CH(CH3)-CH2-)n;
  • гетерополимеры – вещества, состоящие из двух разных мономеров. Например, при взаимодействии 1,3-дивинила и стирола получается стирольный каучук.

Полимеры получают с помощью:

  • реакции полимеризации;
  • реакции поликонденсации.

Реакции полимеризации

Реакции полимеризации заключаются в объединении большого количества низкомолекулярных соединений, количество которых определяется степенью полимеризации. Общее уравнение реакции:

Самой распространенной реакций полимеризации является реакция получения полиэтилена:

реакции полимеризации вступают непредельные соединения. Это могут быть молекулы одного мономера, либо разных. В первой ситуации реакцию называют гомополимеризацией, во второй – сополимеризацией.

I. Гомополимеризация

К этим реакциям относят получение полиэтилена, полипропилена поливинилхлорида и т.д. Например, получение полипропилена из пропена под действием ультрафиолетовых лучей:

II. Сополимеризация

К этим реакциям относят получение сополимера этилена и пропилена:

Полимеры, которые получают в результате реакций полимеризации

Формула

Название

Мономеры

Дивинил и стирол

Полимеры(-CH2-CH(Cl)-)nПоливинилхлорид (ПВХ)(-CF2-CF2-)nТефлон(-CH2-C(CH3)=CH-CH2-)nИзопреновый каучук(-CH2-CH=CH-CH2-CH2-CH(C6H5)-)nБутадиенстирольный каучук

Реакции поликонденсации

Реакции поликонденсации заключаются в образовании полимера из мономеров, а также выделении побочного низкомолекулярного вещества. В этих уравнениях исходные реактивы — молекулы мономера с функциональными группами.

I. Гомополиконденсация

К данным реакциям относят получение полимера из одного мономера с выделением конденсата. Например, получение полисахарида из глюкозы – этот процесс происходит в природе.

Синтетическое волокно получают в промышленности из аминоэнантовой кислоты под воздействием температуры, давления и катализатора в виде молекулярного азота.

II. Сополиконденсация

К данным реакциям относят получение полимера из нескольких мономеров с выделением конденсата. Например, получение фенолформальдегидной смолы из фенола и формальдегида в щелочной или подкисленной среде.

С помощью реакций сополиконденсации в промышленности получают полиэфиры, полиамины, полиакрил и т.д.

Характеристика полимеров

Полимеры – это соединения, которые имеют особые свойства и множество классификаций.

По способу получения высокомолекулярные вещества делятся на:

  1. природные (целлюлоза, крахмал, белки);
  2. искусственные (эфиры целлюлозы);
  3. синтетические (капрон, полиэтилен, тефлон).

Также по форме макромолекул:

  1. линейные (волокна, полиэтилен низкого давления);
  2. разветвленные (крахмал, полиэтилен высокого давления);
  3. пространственные (резина, кварц).

А еще по свойствам и применению:

Все полимеры активно используются в отраслях жизнедеятельности человека.

Пластик (пластические массы) – полезные материалы, которые способны под воздействием температур или давления плавиться и при застывании оставлять заданную форму. Этот процесс сопровождается переходом из вязкотекучего в стеклообразное состояние. Главный компонент пластмассы – полимер, а остальные части – это наполнители, пластификаторы, красители и т.д.

Эластомеры – это высокомолекулярные соединения, которые обладают высокоэластичными свойствами. Каучуки используют для изготовления автомобильных шин, промышленных товаров и медицинских препаратов. Натуральный каучук получают из латекса (млечный сок каучуконосных растений). Получают по методу С.В. Лебедева с помощью полимеризации дивинила при действии металлического натрия.

Волокна – это высокомолекулярные соединения, для которых характерна строгая упорядоченность молекул и используется в изготовлении нитей. Существует три типа волокон, которые разделяются еще на несколько подтипов.

  1. Натуральные.
    • Искусственного происхождения.
    • Животного происхождения.
    • Минерального происхождения.

  2. Искусственные.
    • Ацетатное волокно.
    • Вискозное волокно.

  3. Синтетические.
    • Полиамидное волокно.
    • Полиэфирное волокно.

Полимеры – это соединения, с помощью которых человечество способно изготавливать высокопрочные материалы и довольствоваться благами технологий.

Поликонденсация

Поликонденсация — ступенчатый процесс образования полимеров, который осуществляется за счет реакции функциональных групп и образования низкомолекулярных побочных продуктов, например: воды, аммония, кислоты.

Механизм реакции поликонденсации​

Для наглядности рассмотрим механизм образования связи и самого полимера на примере реакции полиэтерификации:

Полиэтерификация — реакция получения полиэфира, которая заключается в поликонденсации многоатомного спирта и многоосновной кислоты.

В общем случае реакцию полиэтерификации можно представить как огромную последовательность реакций этерификации. Реакция полиэтерификации может происходить с использованием и без использования катализатора. В случае, если катализатор не используется — происходит автокатализ.

Образование связи (этерификация)​

Реакция этерификации (реакция Фишера-Шпайера, 1895 г.) — реакция спирта с карбоновой кислотой, которая приводит к образованию сложного эфира. В качестве катализаторов реакции используют сильные кислоты.

Механизм реакции этерификации:

Образование гидроксониевого иона:

Нуклеофильное присоединение молекулы спирта к карбонильному атому углерода:

Изомеризация (депротонирование-протонирование) образовавшегося аддукта:

Элиминирование молекулы воды:

Депротонирование продукта реакции:

Нуклеофильное присоединение молекулы спирта было доказано с помощью изотопа О18.

Образование полимера​

На первом этапе происходит образование димера в результате последовательных реакций этерификаций . Сначала образуется сложный эфир:

Затем этот эфир может взаимодействовать с таким же сложным эфиром или с исходными мономерами:

В результате происходит образование димера:

Полученный димер может дальше взаимодействовать с исходными мономерами, димерами или n-мерами. Например, реакция димера с димером приводит к образованию тетрамера:

Таким образом, в процессе поликонденсации возможно взаимодействие мономеров друг с другом, мономеров с n-мерами и n-меров с n-мерами. Процесс образования полимера протекает ступенями, растущая цепь после каждой ступени остается устойчивым соединением, молекулярная масса нарастает постепенно.

Примеры реакций​

Полиэтерификация (получение полиэфиров)​

Полиэфиры (или полиэстры) — полимеры, получаемые реакцией поликонденсации многоосновных кислот и многооатомных спиртов. Пример реакции получения полиэтилентерефталата (ПЭТФ):

Примечание. Полиэфиры также называют полиэстрами (от англ. ester — «эфир»).

Поликонденсация фенола​

Реакция поликонденсации фенола с формальдегидом происходит с образованием фенолформальдегидных смол:

Получение поликарбоната​

Общая формула поликарбонатов:

Реакция получения поликарбонатов

Получение полиамидов​

Также к реакциям поликонденсации относят реакцию получения полиамида-6 (капрон, найлон-6):

Получение диметилсилоксана (силиконы)​

Общая формула полисилоксана:

Дихлорметилсилан. Первая ступень протекает с образованием диметилсилоксана. Затем

Поликонденсационные равновесия​

Рассмотрим влияние константы равновесия на предельно достижимый выход и молекулярную массу полимера на примере реакции полиэтерификации:

Запишем ее в упрощенном виде:

Рассмотрим влияние константы равновесия на глубину протекания реакции:

Глубина протекания реакции характеризуется степенью завершенности реакции Х Х Х :

В отсутствие реакции ограничения роста цепи:

Полученное уравнение называется уравнением Карозерса:

Оно иллюстрирует зависимость средней степени полимеризации от степени завершенности реакции X X X .

Подставим в уравнение Карозерса выведенное уравнение X X X :

Полученные уравнения позволяют оценить предельно достижимый выход и молекулярную массу при поликонденсации исходя из константы равновесия реакции. Из расчетов установлено, что равновесная поликонденсация может считаться необратимой и использоваться для синтеза полимеров при К > 1 0 3 – 1 0 4 К>10^3–10^4 К > 1 0 3 – 1 0 4 .

Однако на практике ни одна из наиболее часто используемых реакций не обладает такой константой равновесия. Поэтому для смещения равновесия необходимо организовывать отвод продуктов. Чаще всего из зоны реакции удаляют низкомолекулярный продукт, реже полимер. Вода и подобные ей низкомолекулярные продукты удаляются отгонкой при атмосферном давлении, менее летучие продукты — отгонкой под вакуумом. Таким образом реакция протекает в неравновесном режиме.

Влияние избытка одного из мономеров​

При избытке одного из исходных мономеров на концах макромолекулы образуются одинаковые функциональные группы и рост цепи прекращается. Поэтому соотношение исходных компонентов должно быть 1:1.

Поликонденсация в большинстве случаев состоит во взаимодействии двух различных функциональных групп. Если в систему внести монофункциональное соединение, способное вступать во взаимодействие с одной из функциональных групп, участвующих в поликонденсации, то оно блокирует эти группы и прекращает процесс поликонденсации. Величина степени поликонденсации определяется молекулярным соотношением бифункционального и монофункционального соединения. Это правило называют правилом Коршака:

Трехмерная поликонденсация​

При совместной поликонденсации мономеров с тремя и более функциональными группами образуются сшитые трехмерные полимеры. Особенностью таких реакция является то, что на глубоких стадиях реакции при поликондесации теряется текучесть реакционной массы.

На первой стадии реакции, когда образуются линейные и разветвленные олигомеры, реакционная система сохраняет текучесть. На глубоких стадиях, когда образуется сшитый полимер — текучесть реакционной массы теряется. Эта важная технологическая особенность трехмерной поликонденсации приводит к необходимости совмещать заключительную стадию реакции с формированием товарного изделия (литьем в формы). Получаемые таким образом сшитые полимеры называют термореактивными или термореактопластами.

Рассмотрим пример поликонденсации глицерина и терефталевой кислоты.

Тогда точка гелеобразования будет равна:

Способы проведения поликонденсации​

Поликонденсация в расплаве​

Достоинства: можно получить высокомолекулярный полимер с высокой скоростью в отсутствие растворителя.

Недостатки: необходимость получения расплава полимера, что затруднительно и невозможно для высокоплавких полимеров (начинается разложение).

Получают: Полиамиды, полиэфиры

Проведение поликонденсации в расплаве является наиболее разработанным и распространенным промышленным способом синтеза поликонденсационных полимеров. Реакцию проводят при температуре на 10-20°С выше температуры плавления синтезируемого полимера (обычно при 200-300°С). Сначала в атмосфере инертного газа и на конечных стадиях в вакууме для более полного удаления побочных продуктов из сферы реакции. Процесс может быть периодическим или непрерывным. К достоинствам способа поликонденсации в расплаве относится простота технологической схемы и высокое качество получаемого полимера. Однако необходимость работы при высокой температуре и создания вакуума усложняет аппаратурное оформление технологического процесса.

Поликонденсация в растворе​

Меньшие скорости, трудность удаления низкомолекулярных продуктов.

Способ проведения поликонденсации в растворе также широко распространен в промышленности, особенно при получении высокоплавких полимеров. Поликонденсацию осуществляют в одном растворителе или в смеси растворителей. Низкомолекулярный побочный продукт удаляется либо путем химического взаимодействия с растворителем, либо отгонкой с парами растворителя.

Поликонденсация в растворе имеет некоторые технологические преимущества перед другими способами поликонденсации. Она проводится в более мягких температурных условиях, позволяет исключить местные перегревы за счет более интенсивного теплообмена, не требует применения вакуума и инертного газа, а следовательно, сложной аппаратуры. Однако синтез полимеров этим способом связан с необходимостью проведения таких операций, как приготовление растворов мономеров, регенерация растворителя, промывка полимера, его фильтрация, сушка и т. п.

Поликонденсацию в расплаве и в растворе можно ускорить введением катализаторов. Например, при синтезе фенолформальдегидных олигомеров в качестве катализаторов используют органические и минеральные кислоты или основания.

Поликонденсация в эмульсии​

Поликонденсация в эмульсии пока не нашла широкого применения. Ее осуществляют главным образом в тех случаях, когда оба мономера нерастворимы в воде. Реакция поликонденсации идет в стабилизированных каплях мономерной смеси, из которых в водную фазу уходит, растворяясь в ней, низкомолекулярный побочный продукт.

Поликонденсация на границе раздела фаз​

Отпадает необходимость соблюдения стехиометрического соотношения, т. к. подача компонентов в зону реакции регулируется скоростью их диффузии.

Можно получать высокоплавкие полимеры. Таким способом получают полиэфиры, полиамиды, полиуретаны и полимочевины.

Поликонденсация на границе раздела фаз (межфазная поликонденсация) состоит в том, что реакция протекает на границе раздела двух несмешивающихся жидкостей, одной из которых обычно является вода, причем каждая жидкость растворяет один из мономеров. Полимер образуется в виде пленки на поверхности раздела, откуда его непрерывно извлекают. Побочный низкомолекулярный продукт растворяется в одной из жидкостей (чаще в воде) и выводится из сферы реакции. Поэтому межфазная поликонденсация является необратимым процессом, и образующиеся полимеры имеют высокую молекулярную массу. Межфазной поликонденсацией в промышленности получают некоторые виды полиамидов, поликарбонатов и др.

Пример лабораторного синтеза полиамида-6-10 (нейлон, nylon):

В твердой фазе​

Поликонденсация в твердой фазе изучена пока недостаточно, но она представляет большой теоретический и практический интерес. Обычно используются процессы, в которых первая стадия протекает в растворе или расплаве, а последняя стадия — в твердой фазе. Примером такого процесса является трехмерная поликонденсация, широко применяемая в настоящее время в промышленности для получения ряда смол (фенолоальдегидных, эпоксидных и др).

Получение фенолформальдегидных смол:

4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.

Высокомолекулярными соединениями (ВМС) называют соединения с молекулярной массой более 10000.

Практически все высокомолекулярные вещества являются полимерами.

Полимеры — это вещества, молекулы которых состоят из огромного числа повторяющихся структурных звеньев, соединенных между собой химическими связями.

Полимеры могут быть получены с помощью реакций, которые можно разделить на два основных типа: это реакции полимеризации и реакции поликонденсации.

Реакции полимеризации

Реакции полимеризации — это реакции образования полимера путем объединения огромного числа молекул низкомолекулярного вещества (мономера).

Количество молекул мономера ( n ), объединяющихся в одну молекулу полимера, называют степенью полимеризации.

В реакцию полимеризации могут вступать соединения с кратными связями в молекулах. Если молекулы мономера одинаковы, то процесс называют гомополимеризацией, а если различны — сополимеризацией.

Примерами реакций гомополимеризации, в частности, является реакция образования полиэтилена из этилена:

Примером реакции сополимеризации является синтез бутадиен-стирольного каучука из бутадиена-1,3 и стирола:

Полимеры, получаемые реакцией полимеризации, и исходные мономеры

Мономер

Получаемый из него полимер

Структурная формула

Варианты названия

Структурная формула

Варианты названия

этилен, этенполиэтиленпропилен, пропенполипропиленстирол, винилбензолполистирол, поливинилбензолвинилхлорид, хлористый винил, хлорэтилен, хлорэтенполивинилхлорид (ПВХ)тетрафторэтилен (перфторэтилен)тефлон, политетрафторэтиленизопрен (2-метилбутадиен-1,3)изопреновый каучук (натуральный)бутадиен-1,3 (дивинил)бутадиеновый каучук, полибутадиен-1,3

хлоропреновый каучук

бутадиенстирольный каучук

Реакции поликонденсации

Реакции поликонденсации — это реакции образования полимеров из мономеров, в ходе которых, помимо полимера, побочно образуется также низкомолекулярное вещество (чаще всего вода).

В реакции поликонденсации вступают соединения, в состав молекул которых входят какие-либо функциональные группы. При этом реакции поликонденсации по тому, один используется мономер или больше, аналогично реакциям полимеризации делятся на реакции гомополиконденсации и сополиконденсации.

К реакциям гомополиконденсации относятся:

* образование (в природе) молекул полисахарида (крахмала, целлюлозы) из молекул глюкозы:

* реакция образования капрона из ε-аминокапроновой кислоты:

К реакциям сополиконденсации относятся:

* реакция образования фенолформальдегидной смолы:

* реакция образования лавсана (полиэфирного волокна):

Материалы на основе полимеров

Пластмассы

Пластмассы — материалы на основе полимеров, которые способны под действием нагревания и давления формоваться и сохранять заданную форму после охлаждения.

Помимо высокомолекулярного вещества в состав пластмасс входят также и другие вещества, однако основным компонентом все же является полимер. Благодаря своим свойствам он связывает все компоненты в единую целую массу, в связи с чем его называют связующим.

Пластмассы в зависимости от их отношения к нагреванию делят на термопластичные полимеры (термопласты) и реактопласты.

Термопласты — вид пластмасс, способных многократно плавиться при нагревании и застывать при охлаждении, благодаря чему возможно многоразовое изменение их изначальной формы.

Реактопласты — пластмассы, молекулы которых при нагревании «сшиваются» в единую трехмерную сетчатую структуру, после чего изменить их форму уже нельзя.

Так, например, термопластами являются пластмассы на основе полиэтилена, полипропилена, поливинилхлорида (ПВХ) и т.д.

Реактопластами, в частности, являются пластмассы на основе фенолформальдегидных смол.

Каучуки

Каучуки — высокоэлластичные полимеры, углеродный скелет которых можно представить следующим образом:

Как мы видим, в молекулах каучуков имеются двойные C=C связи, т.е. каучуки являются непредельными соединениями.

Каучуки получают полимеризацией сопряженных диенов, т.е. соединений, у которых две двойные C=C связи, разделены друг от друга одной одинарной С-С связью.

Так например, особо зарекомендовавшими себя мономерами для получения каучуков являются:

В общем виде (с демонстрацией только углеродного скелета) полимеризация таких соединений с образованием каучуков может быть выражена схемой:

Таким образом, исходя из представленной схемы, уравнение полимеризации изопрена будет выглядеть следующим образом:

Весьма интересным является тот факт, что впервые с каучуком познакомились не самые продвинутые в плане прогресса страны, а племена индейцев, у которых промышленность и научно-технический прогресс отсутствовали как таковые. Естественно, индейцы не получали каучук искусственным путем, а пользовались тем, что давала им природа: в местности, где они проживали (Южная Америка), произрастало дерево гевея, сок которого содержит до 40-50% изопренового каучука. По этой причине изопреновый каучук называют также натуральным, однако он может быть получен и синтетическим путем.

Все остальные виды каучука (хлоропреновый, бутадиеновый) в природе не встречаются, поэтому всех их можно охарактеризовать как синтетические.

Однако каучук, не смотря на свои преимущества, имеет и ряд недостатков. Так, например, из-за того что каучук состоит из длинных, химически не связанных между собой молекул, его свойства делают его пригодным для использования только в узком интервале температур. На жаре каучук становится липким, даже немного текучим и неприятно пахнет, а при низких температурах подвержен затвердеванию и растрескиванию.

Технические характеристики каучука могут быть существенно улучшены его вулканизацией. Вулканизацией каучука называют процесс его нагревания с серой, в результате которого отдельные, изначально не связанные друг с другом, молекулы каучука «сшиваются» друг с другом цепочками из атомов серы (полисульфидными «мостиками»). Схему превращения каучуков в резину на примере синтетического бутадиенового каучука можно продемонстрировать следующим образом:

Волокна

Волокнами называют материалы на основе полимеров линейного строения, пригодные для изготовления нитей, жгутов, текстильных материалов.

Классификация волокон по их происхождению

Искусственные волокна (вискозу, ацетатное волокно) получают химической обработкой уже существующих природных волокон (хлопка и льна).

Синтетические волокна получаются преимущественно реакциями поликонденсации (лавсан, капрон, нейлон).


источники:

http://onlearning.ru/vms/polikondensatsiya/

http://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/polimery