Что такое суммарное уравнение коррозионного процесса

Электрохимическая коррозия металлов

Коррозией металлов называют самопроизвольное разрушение металлов под действием различных окислителей из окружающей среды.

В реальных условиях коррозии обычно подвергаются технические металлы, содержащие примеси других металлов и неметаллических веществ.

Механизм электрохимической коррозии в таких металлах аналогичен механизму процессов, протекающих в короткозамкнутых гальванических элементах, в которых на участках с более отрицательным потенциалом идет процесс окисления (разрушение металлов), а на участках с более положительным потенциалом процесс восстановления окислителя (коррозионной среды).

Наиболее часто встречаются окислители (деполяризаторы):

· ионы водорода (коррозия с водородной деполяризацией)

2Н + + 2 ē = Н 2 (в кислой среде),

2О + 2 ē = Н2 + 2ОН — (в нейтральной и щелочной средах);

O2 + 4 ē + 4Н + = 2Н2О (в кислой среде);

О2 +4 ē + 2Н2О = 4ОН — (в щелочной и нейтральной средах).

Методика рассмотрения работы гальванопары при электрохимической коррозии.

· Составляют схему гальванопары:

· Выписывают стандартные потенциалы металлов и окислителей коррозионной среды (табл.П.7), определяют восстановитель (меньший потенциал), окислитель (больший потенциал).

· Записывают уравнения процессов окисления и восстановления и суммарное уравнение окислительно-восстановительной реакции, протекающей при гальванокоррозии.

· Указывают направление движения электронов.

Пример 1.Гальванопара алюминий железо в воде (среда нейтральная). В воде растворен кислород.

· Схема гальванопары Al / H2O, O2 / Fe

· Потенциалы = 1,88 B; = 0,46B;

= + 0,814B.

Восстановитель – Al, окислитель О2.

· Al(): 4 Al 3 ē + 3Н2О = Al(OH)3+ 3Н + процесс окисления;

Fe(+): 3 О2 + 4 ēē + 2Н2 О = 4ОН — процесс восстановления

· Направление движения электронов от участка с меньшим потенциалом к участку с большим потенциалом:

() Al/ Fе (+) ē

О2 , Н2О

Пример 2. Определить процессы, протекающие при коррозии луженого железа (среда – влажный воздух, содержащий кислород, пары воды и ионы Н + ), если нарушена сплошность покрытия.

· Потенциалы:= 0,44 B; = 0,136 B;

= + 1,228 B.

Восстановитель – железо, окислитель – кислород.

·Fe(): 2 Fe 2ē = Fe 2+ – процесс окисления

Sn(+): 1 О2 + 4 ē + 4Н + =2Н2О – процесс восстановления

2Fe + О2 + 4Н + = 2Fe 2+ + 2Н2О

При нарушении целостности покрытия будет разрушаться Fe.

· Электроны движутся от участка с меньшим потенциалом к участку с большим потенциалом:

() Fe/ Sn (+) ē

О2 , Н +

Пример 3. Рассмотреть коррозию детали из железа и алюминия в щелочной среде (КОН), если растворенный кислород отсутствует.

· Схема гальванопары: Al / КОН/ Fe

· Потенциалы: = 2,36 B; = 0,874 B;

= 0,827 B. Восстановитель алюминий, окислитель — вода.

· Al(): 2 Al 3ē + 4OH — = AlO2 — + 2H2O – процесс окисления

Fe(+): 3 2 H2O + 2 ē = 2 OH — + H2 – процесс восстановления

2 Al + 2 OH — + 2H2O = 2 AlO2 — + 3 H2

· Направление перемещения электронов в системе:

() Al/ Fe (+) ē

H2O, KOH

Задание к подразделу 4.4

Рассмотрите коррозию гальванопары, используя потенциалы (табл. П.7), укажите анод и катод соответствующей гальванопары в различной коррозионной среде, рассчитайте ЭДС, напишите уравнения анодного и катодного процессов, молекулярное уравнение реакции коррозии, укажите направление перемещения электронов в системе.

Номер заданияКоррозионная среда
а) H2O + O2б) NaOH + H2Oв) H2O + Н +
321.Fe / ZnZn / AlPb / Zn
322.Fe / NiFe / ZnAl / Cu
323.Pb / FeCd / CrAl / Ni
324.Cu / ZnAl / CuSn / Cu
325.Zn / FeFe / CrCo / Al
326.Zn / AlPb / ZnCr / Ni
327.Cr / CuPb / CrBi / Ni
328.Cu / AlCr / ZnFe / Mg
329.Zn / SnMg / CdCr / Bi
330.Co / MgZn / FePb / Al
331.Pb / ZnBi / NiCd / Al
332.Bi / NiCu / ZnFe / Ni
333.Fe / MgFe / CuCo / Cd
334.Sn / FePb / ZnCr / Fe
335.Cr / FeFe / MgCo / Cu
336.Fe / CrCr / CuCr / Cu
337.Fe / CuCd/ ZnCd/ Zn
338.Zn / CuCr / NiCr / Cd
339.Mg / CuCr / CdZn / Al
340.Sn / CuBi / NiBi / Ni

Электролиз растворов

Электролиз – это совокупность окислительно-восстановительных процессов, происходящих при прохождении электрического тока через электрохимическую систему, состоящую из двух электродов и электролита.

Электрод, на котором происходит восстановление, называется катодом, он заряжен отрицательно. Электрод, на котором происходит окисление, называется анодом, он заряжен положительно.

При электролизе водных растворов могут протекать процессы, связанные с электролизом воды, т.е. растворителя.

Катодные процессы

На катоде возможно восстановление:

· катионов металла Ме n+ + = Me;

· катиона водорода (свободного или в составе молекул воды):

2H + + 2ē = H 2­ ( в кислой среде) ;

2H2O + 2 ē =H 2­+ 2 OH — ( в нейтральной и щелочной средах).

Для выбора приоритетного процесса следует сравнить стандартные электродные потенциалы металла и водорода (табл. П.6, П.7). Потенциал восстановления катионов водорода необходимо использовать с учетом перенапряжения, » —1 В.Все металлы по своему поведению при электролизе водных растворов можно разделить на 3 группы.

1. Активные металлы (Li — Al) из-за низкой окислительной способности их ионов на катоде не осаждаются, вместо них идет восстановление ионов водорода.

2. Металлы средней активности (Mn, Zn, Fe, Sn) могут осаждаться на катоде с одновременным выделением водорода.

3. Малоактивные металлы (стоящие в ряду напряжений после водорода) из-за высокой окислительной способности их ионов осаждаются на катоде без выделения водорода.

Анодные процессы

На аноде возможны процессы окисления:

· материала анода Ме — = Me n +

Анионы кислородосодержащих кислот, имеющие в своем составе атом

элемента в высшей степени окисления (SO4 2 — , NO3 — и др.), при электролизе водных растворов на аноде не разряжаются.

С учетом перенапряжения величину потенциала выделения кислорода нужно считать равной 1,8 В.

Пример 1. Электролиз водного раствора сульфата калия с инертными электродами:

(-) Kатод K + H2O(+) Aнод SO4 2 — H2O

= — 2,92 B ; = -1 B. Сульфат-ионы не разряжаются.

Так как> , » 1,8 B.

происходит восстановление воды: 2H2O — 4ē = O2­ + 4 H +

среда щелочная среда кислая

Пример 2. Электролиз водного раствора хлорида олова с инертными электродами:

SnCl 2 = Sn 2+ + 2Cl —

(-) Kатод Sn 2 + , H2O(+) Aнод Cl — , H2O

= — 0,136 B ; = -1B. = 1,36 В ; » 1,8 B.

Так как> , Так как , идет идет процесс восстановления процесс окисления ионов Сl — :

ионов олова: Sn 2+ + 2 ē = S n 2Cl — — 2 ē = Cl 2­

Пример 3. Электролиз сульфата меди с медным анодом:

(-) Kатод Cu 2+ H2O (+) Aнод Сu SO4 2 — H2O

= + 0,34 B ; = -1 B. = + 0,34 B; » 1,8 B.

Так как> , Сульфат-ионы не разряжаются.

происходит восстановление Так как ,

ионов меди:Cu 2+ +2ē = Cu анод растворяется: Cu — 2ē = Cu 2+

Количественные соотношения при электролизе определяют в соответствии с законами, открытыми М. Фарадеем (1834).

Обобщенный закон Фарадея связывает количество вещества, образовавшегося при электролизе, со временем электролиза и силой тока:

,

где m — масса образовавшегося вещества , г;

М — молярная масса вещества, г/ моль;

n — количество электронов, участвующих в электродном процессе;

t — время электролиза, с;

F — константа Фарадея (96500 Кл/моль).

Для газообразных веществ, выделяющихся при электролизе, формулу использют в виде ,

где V— объем газа, выделяющегося на электроде; V 0 — объем 1 моль газообразного вещества при нормальных условиях (22,4 л/моль).

Пример 4. Рассчитать массу олова и объем хлора при нормальных условиях, выделившихся при электролизе раствора хлорида олова с инертными электродами в течение 1 часа при силе тока 4А.

Решение.

Задание к подразделу 4.5

Рассмотрите катодные и анодные процессы при электролизе водных растворов веществ. Процессы на электродах обоснуйте значениями потенциалов (табл. П.6,7,8). Составьте схемы электролиза с инертными электродами водных растворов предложенных соединений (отдельно два раствора) с инертными электродами либо растворимым анодом. Рассчитайте массу или объем (при нормальных условиях для газов) продуктов, выделяющихся на электродах при пропускании через раствор в течение 1 часа тока силой 1 А.

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все.

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.).

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право.

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

ЗАЩИТА МЕТАЛЛОВ И СПЛАВОВ ОТ КОРРОЗИИ

Все методы защиты от коррозии можно условно разделить на следующие группы:

В состав сплава вводят компоненты, вызывающие пассивность металла. В качестве таких компонентов применяют хром, никель, вольфрам, медь, титан и т.д.

Введение добавок к сталям приводит к тому, что при коррозии образуются плотные продукты реакции, которые предохраняют сплав от дальнейшей коррозии. При этом используют сплавы жаростойкие (стойкие по отношению к газовой коррозии при высоких температурах) и жаропрочные (сплавы, сохраняющие свою высокую механическую прочность при значительных повышениях температуры).

2. ЗАЩИТНЫЕ ПОКРЫТИЯ

2.1.Металлические покрытия – цинк, кадмий, алюминий, олово, серебро и др., а также сплавы – бронза, латунь и т.д. В свою очередь металлические покрытия разделяются на:

а) анодные покрытия — покрытие, у которого потенциал меньше потенциала защищаемой поверхности. При нарушении такого покрытия в первую очередь будет окисляться само покрытие.

б) катодные покрытия – покрытие, у которого потенциал больше потенциала защищаемой поверхности. При нарушении такого покрытия в первую очередь будет окисляться защищаемая поверхность.

2.2. Неметаллические покрытия. Их можно разделить на:

а) неорганические покрытия – неорганические эмали (различные силикаты), оксиды металлов, соединения хрома и фосфора и т.д.

б) органические покрытия – лакокрасочные покрытия, покрытия смолами, резиной, полимерными пленками и т.п.

3. ЭЛЕКТРОХИМИЧЕСКАЯ ЗАЩИТА

Данный метод основан на торможении катодных или анодных процессов.

а) протекторная защита – к защищаемой поверхности конструкции присоединяется деталь из более активного металла (протектор), чем защищаемая поверхность. При этом образуется коррозионная пара, в которой защищаемая поверхность будет катодом, а разрушаться в первую очередь будет протектор. Протекторная защита эффективно используется при защите кораблей от коррозии.

б) катодная защита – защищаемое изделие подключается к отрицательному полюсу внешнего источника постоянного тока и становится катодом, а анодом служит вспомогательный, обычно стальной, электрод, который растворяется, а на защищаемом сооружении выделяется водород. Катодная защита используется для защиты от коррозии подземных трубопроводов, кабелей, водных резервуаров.

4. ИЗМЕНЕНИЕ СВОЙСТВ КОРРОЗИОННОЙ СРЕДЫ

а) Для снижения агрессивности среды уменьшают концентрацию компонентов, которые опасны в коррозионном отношении. Например, в нейтральных средах деполяризатором является кислород, поэтому его удаляют кипячением или восстанавливают.

б) Для замедления процессов коррозии широко используют ингибиторы. Ингибиторы— вещества, которые при добавлении в агрессивную среду, уменьшают скорость коррозии. Они используются в тех случаях, когда в системе редко или мало обновляется раствор электролита ( в парогенераторах, системах охлаждения и т.д.)

Механизм действия большинства ингибиторов заключается в адсорбции ингибитора на корродирующей поверхности, и затем тормозятся катодные или анодные процессы. В качестве ингибиторов используют органические вещества, содержащие серу, азот и кислород (уротропин), неорганические вещества (H2O2, Na2Cr2O7, NaNO2 и. т.д.)

5. РАЦИОНАЛЬНОЕ КОНСТРУИРОВАНИЕ

При конструировании исключить (по возможности) или сократить число и размеры особо опасных, с точки зрения коррозии, участков (например, сварных швов, узких щелей); предусмотреть специальную защиту металлической конструкции от коррозии.

ПРИМЕР 6: К какому типу покрытия относится лужение железа (железо покрывают оловом)? Рассмотрите схему коррозионного процесса, происходящего при нарушении целостности покрытия в растворе сульфида натрия.

Ответ: Коррозия луженого железа осуществляется за счет работы коррозионного элемента, состоящего из железа и олова.

Е 0 (Fe) =-0,44B, a E 0 (Sn) = -0,14B. Т.к. потенциал покрытия больше потенциала металла изделия, то при нарушении целостности покрытия в первую очередь будет окисляться металл изделия, т. е. данное покрытие относится к катодным покрытиям.

В водном растворе сульфид натрия подвергается гидролизу по аниону слабой кислоты:

S 2- + HOH ↔ HS — + OH —

В результате гидролиза среда раствора электролита становится щелочной (рН > 7), т.к. накапливаются гидроксид-ионы ОН — , следовательно, деполяризатором являются молекулы кислорода, растворенные в воде, и на катодных участках будет осуществляться кислородная деполяризация.

Процесс коррозии протекает по схеме:

Анодные участки: Fe – 2e = Fe 2+

Катодные участки: O2 + 2H2O + 4e = 4OH —

ПРИМЕР 7: Какой из металлов – цинк или медь – можно использовать в качестве протектора для защиты от электрохимической коррозии железной конструкции? Рассмотрите схему коррозионного разрушения железной конструкции в почвенном растворе с рН = 4.

Ответ: Е 0 (Fe) = -0,44В; Е 0 (Zn) = -0,76В; Е 0 (Cu) = 0,34В. В качестве протектора используется наиболее активный металл, у которого потенциал меньше, чем потенциал защищаемой конструкции. В данном случае в качестве протектора для защиты железной конструкции от электрохимической коррозии необходимо использовать цинк, т.к. Е 0 (Zn) 0 (Fe).

Т.к. рН = 4, почвенный раствор кислый (pH 2+ 1

Катодный процесс: рН + + 2ē →Н2↑ 1

Zn + 2HCl → ZnCl2 + H2 или Zn + 2H + → Zn 2+ + H2

При использовании метода внешнего потенциала защищаемое изделие подключается к отрицательному полюсу источника тока, а положительный полюс замыкают на землю.

ЛАБОРАТОРНАЯ РАБОТА

«Коррозия металлов. Методы защиты металлов от коррозии»

Опыт 1. Электрохимическая неоднородность поверхности стали

Для проведения опыта зачистите стальную пластинку наждачной бумагой, промойте проточной водой и высушите фильтровальной бумагой. Затем положите на пластинку бумажный фильтр, смоченный ферроксилиндикатором. Фероксилиндикатор представляет собой водный раствор хлорида натрия, содержащий гексацианоферрат (III) калия – K3[Fe(CN)6] и фенолфталеин. Гексацианоферрат (III) калия является качественным реактивом на ионы Fe 2+ , качественным признаком наличия этих ионов является нерастворимого гексацианоферрат (III) калия-железа (II) тёмно-синего цвета, называемого турнбелевая синь.

Через 2-3 минуты опишите изменение цвета фильтровальной бумаги, форму и распределение пятен. Опишите наблюдения, запишите уравнения электродных реакций и схему коррозионного процесса.

Опыт 2. Коррозия железа в контакте с углеродом

Заполните U-образную трубку на ½ объёма 0,5 М раствором хлорида натрия. Зачистите наждачной бумагой и промойте проточной водой стальные и графитовые стержни. В одно колено трубки поместите стальной стержень и добавьте 3-4 капли раствора K3[Fe(CN)6], во второе колено погрузите графитовый стержень и добавьте 3-4 капли фенолфталеина.

Замкните внешнюю цепь через милливольтметр и запишите напряжение. Отключите вольтметр, замкните внешнюю цепь и наблюдайте за работой элемента. Как изменяется окраска раствора в катодном и анодном пространствах.

Запишите уравнения катодного и анодного процессов, составьте суммарное уравнение коррозионного процесса и схему коррозионного элемента.

Опыт 3. Легирование металла

В качестве легирующих добавок к железу применяют никель и хром. В две пробирки налейте на ½ объёма воды и добавьте 2-4 мл раствора серной кислоты и 2-3 капли раствора K3[Fe(CN)6]. В одну пробирку поместите зачищенную наждачной бумагой и промытую проточной водой стальную пластинку, во вторую пробирку – пластинку из нержавеющей стали (незачищенную).

Отметьте изменение цвета раствора через 5 минут и количество выделяющихся пузырьков газа в единицу времени.

Объясните ваши наблюдения, запишите уравнения анодных и катодных процессов. Приведите схему коррозионного процесса и уравнение суммарной реакции. Объясните причину различного поведения пластинок в растворе кислоты.

Опыт 4. Анодные и катодные защитные покрытия

В две пробирки налейте на ½ объёма воды и добавьте 1-2 мл раствора серной кислоты и 2-4 капли раствора K3[Fe(CN)6]. В одну пробирку поместите полоску оцинкованного, а в другую – лужёного железа. Отметьте изменение цвета раствора через 5 минут.

Объясните ваши наблюдения, запишите уравнения анодных и катодных процессов, приведите схемы работы коррозионных элементов и суммарные уравнения процессов коррозии. Укажите, какое из изученных покрытий было анодным, какое – катодным.

Вылейте растворы из пробирок; полоски железа хорошо промойте водой и проделайте опыт с раствором щёлочи. Наблюдения запишите и объясните так же, как в случае с кислым раствором.

Опыт 5. Протекторная защита металла

А. Протекторная защита свинца

В две пробирки налейте на ½ объёма 0,4 М раствора уксусной кислоты СН3СООН и добавьте в каждую несколько капель раствора иодида калия. В одну пробирку поместите полоску свинца, в другую – такую же полоску свинца, но в контакте с цинком. Наблюдайте, в какой из пробирок быстрее появится жёлтое окрашивание.

Объясните наблюдаемые явления. Запишите уравнения анодных и катодных процессов, приведите схемы работы коррозионных элементов и суммарные уравнения процессов коррозии.

Б. Протекторная защита стали

В две пробирки налейте на ½ объёма 0,1 М раствора серной кислоты и 2-4 капли раствора K3[Fe(CN)6]. В одну пробирку поместите стальную полоску, в другую – такую же полоску стали, но в контакте с цинком.

Запишите ваши наблюдения и объясните их, написав уравнения анодного и катодного процессов, приведите схемы работы коррозионных элементов и суммарные уравнения процессов коррозии.

Опыт 6. Влияние ингибитора на скорость коррозии

В две пробирки налейте на ½ объёма 0,1 М раствора серной кислоты и поместите в каждую пробирку полоску железа или железные стружки. В одну пробирку добавьте уротропин или другой ингибитор.

Наблюдения запишите и объясните. Запишите уравнения анодных и катодных процессов, приведите схемы работы коррозионных элементов и суммарные уравнения процессов коррозии.

ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ

Задание 1

Определите тип коррозии. Составьте уравнения процессов, протекающих в каждом из случаев, и схему коррозионного элемента для случая электрохимической коррозии. Укажите тип коррозионного разрушения.

(А) а/ Шероховатая железная пластинка в среде газообразного хлора при Т=573 К;

б/ Изогнутая цинковая пластинка в растворе K2S при Т=298К.

(Б)а/ Полированная пластина из углеродистой стали в сухом хлороводороде при Т=300 К;

б/ Полированная алюминиевая пластина в растворе Са(ОН)2 при Т=298 К.

(В) а/ Полированная алюминиевая пластина в сухом воздухе при Т=400К;

б/ Шероховатая железная пластинка в растворе (NH4)2S при Т=298К.

(Г) а/ Шероховатая железная пластинка в сухом воздухе при Т=373К;

б/ Изогнутая железная пластина в растворе NiSO4 при Т=298К.

(Д) а/ Шероховатая цинковая пластинка в сухом сероводороде при Т=300К;

б/ Полированная алюминиевая пластина в растворе FeCl2 при Т=298К.

(Е) а/ Изогнутая пластина из углеродистой стали в сухом хлороводороде при Т=300К;

б/ Изогнутая цинковая пластина в растворе Na2CO3 при Т=298К.

(Ж) а/ Шероховатая алюминиевая пластина в водяном паре при Т=423К;

б/ Изогнутая железная пластина в растворе HCl при Т=298К.

(З) а/ Полированная цинковая пластина в сухом сероводороде при Т=360К;

б/ Полированная цинковая пластина в растворе CuSO4 при Т=298 К.

(И) а/ Изогнутая пластина из углеродистой стали в насыщенном кислородом бензине при Т=298К;

б/ Изогнутая алюминиевая пластина в растворе Na2SO3 при Т=298 К.

(К) а/ Полированная алюминиевая пластина в сухом воздухе при Т=398К;

б/ Пластина из углеродистой стали в растворе K2SO4 при Т=298 К.

(Л) а/ Полированная пластина из углеродистой стали в сухом хлороводороде при Т=350К;

б/ Шероховатая цинковая пластинка во влажном воздухе при Т=298К.

(М) а/ Шероховатая железная пластинка в насыщенном кислородом керосине при Т=298К;

б/ Пластина из углеродистой стали в растворе CrCl2 при Т=298 К.

(Н) а/ Полированная пластина из углеродистой стали в насыщенном хлором керосине при Т=298К;

б/ Полированная алюминиевая пластина в растворе Ca(NO3)2 при Т=298 К.

(О) а/ Полированная цинковая пластина во влажном воздухе при Т=300К;

б/ Пластина из углеродистой стали в растворе NaOH при Т=298К.

(П) а/ Полированная железная пластина в водяном паре при Т=473К;

б/ Изогнутая цинковая пластина в растворе KCl при Т=298 К.

(Р) а/Шероховатая алюминиевая пластинка в сухом хлороводороде при Т=380К;

б/ Изогнутая железная пластина в растворе (NH4)2SO4 при Т=298 К.

(С) а/ Шероховатая железная пластинка в сухом сероводороде при Т=330К;

б/ Шероховатая алюминиевая пластинка в растворе Na2S при Т=298К.

(Т) а/ Полированная пластина из углеродистой стали в газообразном хлоре при Т=398К;

б/Полированная цинковая пластина в растворе K2SiO3 при Т=298К.

(У) а/ Полированная пластина из углеродистой стали в сухих парах брома при Т=320К;

б/ Изогнутая цинковая пластина в растворе Cr(NO3)2 при Т=298 К.

(Ф) а/ Полированная алюминиевая пластина в насыщенном кислородом керосине при Т=298К;

б/ Полированная алюминиевая пластина в растворе H2SO4 при Т=298 К.

Задание 2

(А) Какой из двух металлов, контактирующих в конструкции, будет подвергаться разрушению. Металлическое изделие находится в растворе электролита. Составьте соответствующие уравнения и схему коррозионного элемента: Fe/Ti в растворе CuCl2;

(Б)См. условие в варианте А: Cu/Au в растворе CrCl2;

(В) См. условие в варианте А: Fe/Cd в растворе KOH;

(Г) См. условие в варианте А: Sn/Cu в растворе Na2SiO3;

(Д) См. условие в варианте А: Fe/Zn в растворе HCl;

(Е) См. условие в варианте А: Cd/Ni в растворе Cr(NO3)2;

(Ж) См. условие в варианте А: Co/Pb в растворе NaOH;

(З) См. условие в варианте А: Mn/Fe в растворе NaCl;

(И) Каким — анодным или катодным – покрытием будет цинк (1), если изделие изготовлено из железа (2)? Напишите схему коррозионного процесса, протекающего при нарушении целостности покрытия в растворе (NH4)2SO4 (3).

(К) См. условие в варианте И. 1 – Ni, 2 – Fe, 3 — в растворе NaCl

(Л) См. условие в варианте И. 1 – Pb, 2 – Fe, 3 — в растворе Na2CO3

(М) См. условие в варианте И. 1 –Cr, 2 – Fe, 3 — в растворе Cu(NO3)2

(Н) См. условие в варианте И. 1 – Cu, 2 – Fe, 3 — в растворе H2SO3

(О) См. условие в варианте И. 1 – Ag, 2 – Fe, 3 — в растворе Na2SO4

(П) См. условие в варианте И. 1 – Sn, 2 – Fe, 3 — в растворе KOH

(Р) См. условие в варианте И. 1 – Au, 2 – Fe, 3 — в растворе MgCl2

(С) В качестве протектора для защиты от коррозии стальных изделий используют алюминий. Составьте схему процессов, лежащих в основе защитного действия протектора, протекающих в растворе Mn(NO3)2 .

(Т) В качестве протектора для защиты от коррозии стальных изделий используют алюминий. Составьте схему процессов, лежащих в основе защитного действия протектора, протекающих в почвенном растворе с рН = 7.

(У) В качестве протектора для защиты от коррозии стальных изделий используют марганец. Составьте схему процессов, лежащих в основе защитного действия протектора, протекающих в растворе NaНCO3.

(Ф) В качестве протектора для защиты от коррозии стальных изделий используют марганец. Составьте схему процессов, лежащих в основе защитного действия протектора, протекающих в растворе НNO3.

Коррозия металлов. Виды коррозии металлов

Определение коррозии

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией.

Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов:

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь.

Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Виды химической коррозии

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Фактор Пиллинга-Бэдворса

Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

где Vок — объем образовавшегося оксида

VМе — объем металла, израсходованный на образование оксида

Мок – молярная масса образовавшегося оксида

ρМе – плотность металла

n – число атомов металла

AMe — атомная масса металла

ρок — плотность образовавшегося оксида

Оксидные пленки, у которых α 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения сплошности α для некоторых оксидов металлов

МеталлОксидαМеталлОксидα
KK2O0,45ZnZnO1,55
NaNa2O0,55AgAg2O1,58
LiLi2O0,59ZrZrO21.60
CaCaO0,63NiNiO1,65
SrSrO0,66BeBeO1,67
BaBaO0,73CuCu2O1,67
MgMgO0,79CuCuO1,74
PbPbO1,15TiTi2O31,76
CdCdO1,21CrCr2O32,07
AlAl2­O21,28FeFe2O32,14
SnSnO21,33WWO33,35
NiNiO1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.

Водородная деполяризация

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде:

2H + +2e — = H2 разряд водородных ионов

Кислородная деполяризация

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде:

O2 + 4H + +4e — = H2O восстановление растворенного кислорода

Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Виды электрохимической коррозии

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O2 + 4H + + 4e — = 2H2O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла и коррозионной среды

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Примеры задач с решениями на определение защитных свойств оксидных пленок, определение коррозионной стойкости металлов, а также уравнения реакций, протекающих при электрохимической коррозии металлов приведены в разделе Задачи к разделу Коррозия металлов


источники:

http://poisk-ru.ru/s36735t18.html

http://zadachi-po-khimii.ru/obshaya-himiya/korroziya-metallov.html