Что такое уравнение определение начальная школа

Урок математики по теме «Знакомство с уравнениями» по программе «Школа России»

Цели:

  1. Дать детям новое математическое понятие «уравнение». Формировать умение читать и записывать уравнение. Способствовать запоминанию, сознанию, пониманию, составления уравнений;
  2. Способствовать развитию внимания, логического мышления, памяти, культуры математической речи.
  3. Воспитывать самоконтроль, гигиенические навыки письма, аккуратное ведение записей в тетради.

Методы обучения: частично- поисковый, проблемного изложения материала.

Формы организации учебной деятельности: фронтальная, индивидуальная, парная.

Средства обучения: М.И. Моро «Математика» 2 класс, 2 части, Москва, «Просвещение», 2006.

Ход урока

I. Организационный момент.

II. Устные задания:

  • Как называются числа при сложении?
  • Как называются числа при вычитании?
  • Первое слагаемое – 20, второе слагаемое – 40. Найти сумму?
  • Найти сумму чисел 30 и 6.
  • Уменьшаемое – 48, вычитаемое 5. Чему равна разность?
  • Чему равна разность чисел 70 и 6?
  • Увеличить на 4 числа : 15, 20, 61.
  • Увеличить на 3 числа : 18, 30, 79.
  • Состав числа 12?
  • Состав числа 14, 16?
  • На празднике было 12 девочек и 18 мальчиков. Сколько всего детей было на празднике?
  • В холодильнике яблок на 6 больше, чем апельсинов. Апельсинов – 9. Сколько яблок в холодильнике?
  • В кукольном театре 60 кукол. В утреннем спектакле занято 20 кукол. Сколько кукол не занято в спектакле?
  • Как называется это выражение?
  • Прочитать выражение.
  • Найти значение выражения:
    14+dc-40
    d=23c=95

III. Изучение новой темы.

С новой темой познакомится класс
Сегодня узнаем без сомненья
Имя этого выражения: х+4 = 12

А для этого нужно расшифровать слово, решив примеры.

У.: Записать число и классная работа в тетрадях.

У.: Примеры решить в тетрадях.

80-7016+1441+910 – У
55+537+1330+5030 – В
98-840+3063+750 – Н
60 – Р
70 – Е
80 – И
90 – А
УРАВНЕНИЕ

У.: Вам знакома такая запись: + 4=12 ?

Д.: Это пример с окошечком.

У.: А такая: a +4 ?

Д.: Это буквенное выражение.

У.: Что вы делали в первом случае?

Д.: Подбирали число чтобы запись была верной.

У.: Какое это число?

Д.: 8.

У.: что делали во втором случае?

Д.: вместо буквы подставляли число и вычисляли.

У.: Посмотрите на запись х+4=12

У.: На что оно похожа?

Д.: На пример с окошечком, на буквенное выражение.

У.: Что нам говорит знак =?

Д.: Равенство.

У.: Какое равенство? Все числа в нем известны?

Д.: Нет.

У.: Что неизвестно?

Д.: Первое число.

У.: как оно обозначено?

Д.: Латинской буквой.

У.: Если оно неизвестно, перед нами какая встает задача?

Д.: Найти, узнать какое это число.

У.: Найдите это число, чтобы равенство было верным.

Д.: Это число 8 (8+4=12).

У.: Что мы с вами сейчас сделали?

Вы решили уравнение.

У.: Сделаем вывод:

Уравнение – это ……(показать знак =)

Д.: Равенство.

У.: Которое содержит что? (показать на х)

Д.: Неизвестное число.

У.: Что надо сделать с неизвестным числом?

Д.: Его найти.

У.: Как обозначается неизвестное число?

Д.: Латинской буквой.

У.: Кто сможет сказать, что такое уравнение?

Д.: Уравнение – это равенство, которое содержит неизвестное число.

У.: Что значит решить уравнение?

Плакат на доске: Уравнение – это равенство, которое содержит неизвестное число. Решить уравнение – найти такое число, чтобы равенство было верным.

У.: Число, которое мы находим в уравнении х – называется корнем уравнения.

У.: Решить уравнение можно с помощью подбора ( или зная взаимосвязь компонентов при сложении и вычитании)

IV. Физкультминутка (на дыхание).

Раз, два, три, четыре, пять!
Все умеем мы считать
Отдыхать умеем тоже –
Руки за спину положим
Голову поднимем выше
И легко-легко подышим.

V. Первичное закрепление нового материала.

а) У.: Среди данных выражений выбрать нужно уравнение и записать в тетрадь.

Теоретические основы формирования понятия уравнения в начальной школе; методика введения понятия уравнение на примере разных УМК
статья по математике (2 класс)

В настоящее время сложно представить школьный курс математики без понятия уравнение. Большинство задач сводятся к решению и применению различных видов уравнений. При этом уравнения, являются одним из средств моделирования явлений из окружающего нас мира и знакомство с ними, а также они являются существенной частью математического образования.

Понятие уравнение относится к важнейшим общематематическим понятиям. Именно поэтому затруднительно предложить его определение, одновременно и строгое, и доступное для учащихся, приступающих к овладению школьным курсом математики.

В словаре по педагогике под редакцией В.А. Мижерикова, дается следующее определение понятию уравнения – это два выражения, которые соединены знаком равенства и в них входят одна или несколько переменных, называемых неизвестными.

Е.А. Крапивина, говорит о том, что уравнение, представляет собой равенство, содержащее в себе неизвестное число, значение которого нужно найти.

И.А. Моргунова, указывает на то, что понятие уравнение, является равенством, которое выполняется только при некоторых значениях входящих в него букв. Буквы, которые входят в состав уравнения, могут быть неравноправными: одни могут принимать все свои допустимые значения, а другие, значения которых требуется отыскать, называют неизвестными данного уравнения (как правило, их обозначают последними буквами латинского алфавита x, y, z, u, v, w).

Рассмотрев множество определений понятия уравнение можно сделать вывод, что уравнение – это вид равенства с неизвестной величиной, которая чаще всего обозначается латинской буквой. При этом числовое значение данной буквы, позволяющее получить верное равенство, называется корнем уравнения.

В школьном курсе математики термин «уравнение» называют «выражение» или «предложение с переменной».

Можно выделить основные признаки понятия уравнение:

— содержит букву, значение которой неизвестно и его надо найти

Понятие «решить уравнение», является центральным.

Решение уравнения представляет собой преобразование исходного уравнения к более простому уравнению, способ решения которого уже известен.

Решить уравнение – значит найти все значения неизвестных, при которых оно обращается в верное равенство, или установить, что таких значений нет.

Например, установим, является ли уравнением с одним неизвестным равенство х+0=х. Если требуется найти это неизвестное число, то рассматриваемое утверждение является уравнением. Если же рассматривать это равенство, как буквенную запись правила: при сложении любого числа с нулем получается то же самое число, то утверждение не является уравнением.

У уравнения х+0=х сколько угодно решений: любое число х является его решением. У уравнения a+3=4+a нет решений, а у уравнения a+3=4 одно решение: a=1

В определении понятия уравнение используется один из двух терминов: «переменная» или «неизвестное». Переменная — это величина, характеризующаяся множеством значений, которое она может принимать.

И.А. Моргунова, говорит о том, что уравнения имеют важное теоретическое значение, а также служат в практических целях. Большинство задач о пространственных формах и количественных отношениях реального

мира сводится к решению различных видов уравнений.

По мнению А.В. Самойловой, знакомить учащихся в начальной школе с понятием уравнения надо как можно раньше и в процессе их решения осуществлять работу по усвоению детьми правил о взаимосвязи

компонентов и результатов действий.

Математические понятия, в свою очередь, являются важнейшей неотъемлемой частью науки и учебного предмета математики. В начальном курсе математики учитель старается знакомить младших школьников с большинством понятий наглядно, путём созерцания конкретных примеров или практического оперирования ими, опираясь при этом на жизненный опыт учащихся.

В.А. Далингер, считает, что внимание должно быть направлено на умение определять понятия, а не на их заучивание. Следует правильно донести до учащихся, что научные понятия изменчивы: определение понятия – это лишь один из начальных этапов его формирования, а затем происходит процесс, который представляет собой развитие понятий, который характеризуется как постепенное уточнение и усвоение содержания и объёма понятия, его связей и отношений с другими понятиями.

Как отмечает Г.Г. Кочеткова, формирование понятия, является длительным и сложным процессом, которому следует уделять достаточное внимание в образовательном процессе. Важным этапом при формировании понятий, является усвоение его существенных признаков. Словесное определение понятия должно быть итогом работы по усвоению существенных признаков. Следует отметить, что бывает так, когда даётся словесное определение понятия, и оно сразу же используется в дальнейшей работе. Преувеличение роли при словесном определении, является одной из причин пробелов в знаниях учащихся.

Совершенно иного мнения придерживается П. Я. Гальперин, который считает, что формирование понятия не следует растягивать во времени, что это можно осуществить в один приём, когда содержание нового понятия усваивается одновременно, в полном объеме и правильном соотношении признаков, сразу применяется на всем диапазоне намеченного обобщения.

Развитие математических понятий происходит от простого к сложному, или от конкретного к обобщенному. Развитие понятий может происходить поэтапно, при этом на новом уровне обобщения, углубляющем или расширяющем содержание развиваемого понятия.

В процессе усвоения научных знаний младшие школьники сталкиваются с разными видами понятий. Формирование понятия уравнения в начальной школе подготавливает младших школьников к более успешному изучению математики в дальнейшем.

Умение решать уравнения представляет большую сложность для младших школьников. Изучение уравнений в начальных классах обладает пропедевтическим характером. В этой связи крайне важной является подготовка детей в начальных классах к более глубокому изучению уравнений в старшей школе. В начальных классах в ходе работы над уравнениями проводится закрепление правил о взаимосвязи части и целого, сторон прямоугольника и его площади, формирование вычислительных навыков и понимания связи между элементами действий, закрепление порядка действий и формирование умения решать текстовые задачи, осуществляется работа над формированием правильной математической речи. На уроках закрепления уравнения способствуют разнообразию видов заданий.

В начальных классах рассматриваются уравнения только с одной переменной.

Виды уравнений, рассматриваемых в начальных классах:

I. Простые уравнения: х – 4=6

II. Усложненные уравнения:

1. Уравнения, в которых переменная находится в правой части: 6= x-4

2. Уравнения, в которых правая часть представляет числовое выражение: х-4=36:6

3. Уравнения, в которых числовое выражение находится в обеих частях: х-(16:4)=4+2

4. Уравнения, в которых неизвестное входит в состав выражения с переменной: (х+5)-4=6

5. Уравнения, представленные комбинацией уравнений (1-4) (х+5)-4*2=36:6

6. Уравнения, в которых неизвестное находится в обеих частях 2*х-8=х+5 (только в программе Аргинской)

Проанализировав разные учебно-методические комплексы можно сделать вывод о том, что знакомство учащихся с уравнениями обычно начинается на уроках математики во 2 классе.

Автор развивающего обучения Д.Б. Эльконин, предлагают знакомить учащихся с понятием уравнение с самого начала обучения математики, но при этом, не используя взаимосвязи между компонентами и результатами арифметических действий.

Математика. 4 класс

Конспект урока

Математика, 4 класс

Урок 21. Решение уравнений

Перечень вопросов, рассматриваемых в теме:

  1. Что такое уравнение?
  2. Как решить уравнение, где в ответе не число, а числовое выражение.
  3. Что такое корень уравнения?
  4. Как найти неизвестное вычитаемое?

Глоссарий по теме:

Уравнение – это равенство с неизвестным числом. Неизвестное число обозначают латинской буквой.

Решить уравнение – это значит найти значение неизвестного, при котором равенство будет верным.

Корень уравнения – это значение неизвестного, обозначенного латинской буквой в уравнении.

Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Обязательная и дополнительная литература по теме урока:

1. Моро М. И. Учебник для 4 класса четырехлетней начальной школы. М. «Просвещение» — 2017.С. 62,63

2. Волкова Е. В. математика Всероссийская проверочная работа за курс начальной школы. Издательство «Экзамен» 2018.С.27

3. Петерсон Л. Г. математика 3 класс. Часть 2. Ювента, 2015.-96с.: ил. С.77-78

Теоретический материал для самостоятельного изучения:

376 + 282; (х — у) : 3

Являются ли эти записи уравнениями?

Это не уравнения, так как в уравнении должен быть знак «=». Это выражения.

Уравнение – это равенство с неизвестным числом. Неизвестное число обозначают латинской буквой.

Рассмотрите другие записи:

24 + х = 49; 24 + х = 79 — 30

Это уравнения, так как это равенства, содержащие переменную.

Попробуем их решить.

Что значит решить уравнение?

Решить уравнение – это значит найти значение неизвестного, при котором равенство будет верным.

Вспомните алгоритм решения уравнений.

  1. Вспомнить компоненты действия данного уравнения.
  2. Определить неизвестный компонент.
  3. Вспомнить правило нахождения неизвестного компонента.
  4. Применить правило и найти неизвестный компонент.
  5. Записать ответ.
  6. Сделать проверку

Используя алгоритм, решите первое уравнение

Значение неизвестного х = 25. Это корень уравнения.

Корень уравнения – это значение неизвестного, обозначенного латинской буквой в уравнении. В данном случае – это х.

Можно ли решить второе уравнение, используя этот же алгоритм?

Такие уравнения не рассматривались. Какова же цель нашего урока?

Цель урока: научиться решать уравнения, в которых в ответе не число, а числовое выражение.

Такие уравнения мы будем называть составные. Поэтому тема урока: «Решение составных уравнений»

Чтобы решить это уравнение, нужно упростить правую часть.

24 + х = 79 — 30, после чего получаем уравнение известного вам вида

Ответ: корень уравнения 25

Составим алгоритм решения составных уравнений.

Алгоритм решения составных уравнений

1. Найти значение числового выражения.

2. Вспомнить компоненты действия данного уравнения.

3. Определить неизвестный компонент.

4. Вспомнить правило нахождения неизвестного компонента.

5. Применить правило и найти неизвестный компонент.

6. Записать ответ.

7. Сделать проверку.

Решим еще одно уравнение:

Применяем алгоритм решения составных уравнений:

  1. Найти значение числового выражения: 75 — х = 9 ∙ 7
  1. Вспомнить компоненты действия данного уравнения: 75 — х = 63

3. Определить неизвестный компонент.

4. Вспомнить правило нахождения неизвестного компонента.

5. Применить правило и найти неизвестный компонент.

6. Записать ответ.

7. Сделать проверку.

Ответ: корень уравнения 12

Вывод: чтобы решить составное уравнение, в которых в ответе не число, а числовое выражение, необходимо упростить правую часть ( т.е решить выражение), после чего получаем уравнение известного вам вида и решаем его, используя алгоритм решения уравнений.

Решим задачу, составив уравнение:

Сумма неизвестного числа и числа 390 равна произведению чисел 70 и 6. Найди это число.

1. Сумма неизвестного числа и числа 390 – обозначим неизвестное число переменной х, тогда получим х + 390

2. Произведение чисел 70 и 6: 70 ∙ 6

3. Получаем уравнение: х + 390 = 70 ∙ 6

Применяя алгоритм решения составных уравнений, решим его:


источники:

http://nsportal.ru/nachalnaya-shkola/matematika/2021/09/09/teoreticheskie-osnovy-formirovaniya-ponyatiya-uravneniya-v

http://resh.edu.ru/subject/lesson/4580/conspect/