Что такое уравнения состояния природных газов

Добыча нефти и газа

Изучаем тонкости нефтегазового дела ВМЕСТЕ!

Уравнения состояния природных газов

Уравнением состояния называется аналитическая зависимость между термодинамическими параметрами, описывающими поведение вещества.

В качестве таких параметров используются: давление р, температура Т и плотность r.

Уравнение состояние совершенного газа

Определение совершенного газа. Совершенный газ — это газ в котором можно пренебречь объёмом молекул и взаимодействием их между собой

Подходы в описании уравнений состояния реальных газов:

· а) в уравнение совершенного газа вводится один коэффициент z, который учитывает отклонение данных газов от совершенного и называется коэффициентом сверхсжимаемости, а само модифицированное уравнение называют обобщённым газовым законом;

· в) получают эмпирические уравнения состояния с числом параметров больших двух.

Твердотопливные котлы в Украине котлы в Украине

Полное описание первых признаков и выраженных симптомов при гепатите В здесь

Уравнения состояния природных газов

СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПРИРОДНЫХ ГАЗОВ

Природные газы – это вещества, которые при нормальных (н.у.) и стандартных (с.у.) условиях являются газообразными. В зависимости от условий газы могут находиться в свободном, адсорбированном или растворённом состояниях.

В пластовых условиях газы в зависимости от их состава, давления и температуры (термобарического режима в пласте) могут находиться в различных агрегатных состояниях – газообразном, жидком, в виде газожидкостных смесей.

Свободный газ обычно расположен в повышенной части пласта и находится в газовой шапке. Если газовая шапка в нефтяной залежи отсутствует, то весь газ залежи растворён в нефти.

Давление, при котором имеющийся в залежи газ начинает выделяться из нефти, называется давлением насыщения. Давление насыщения нефти газом в пластовых условиях определяется составами, количеством нефти и газа, пластовой температурой.

Растворённый газ, по мере снижения давления при добыче, выделяется из нефти. Он называться попутным газом. В пластовых условиях все нефти содержат растворённый газ. Чем выше давление в пласте, тем больше газа может быть растворено в нефти. В 1 м 3 нефти содержание растворённого газа может достигать 1000 м 3 .

Состав природных газов

Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородов (УВ) метанового ряда СН4–С4Н10: метана, этана, пропана, изобутана и н-бутана, а также неуглеводородных компонентов: H2S, N2, CO, CO2, H2, Ar, He, Kr, Xe и других.

При нормальных и стандартных условиях термодинамически в газообразном состоянии существуют только УВ состава С1–С4. Углеводороды алканового ряда, начиная с пентана и выше, при этих условиях находятся в жидком состоянии, температуры кипения для изо-С5 равна 28 о С, а для н-С5 → 36 о С. Однако, в попутных газах иногда наблюдаются углеводороды С5 за счёт термобарических условий, фазовых переходов и других явлений.

Качественный состав газов нефтяного происхождения всегда одинаков (что нельзя сказать о газах вулканических извержений). Количественное распределение компонентов практически всегда различно.

Состав газовых смесей выражается в виде массовойилиобъемной концентрации компонентовв процентахи мольных долях.

, (2.15)

где Wi — масса i-го компонента; ΣWi — суммарная масса смеси.

, (2.16)

где Vi — объем i-го компонента в смеси; Σ Vi — суммарный объем газа.

, (2.17)

где ni — число молей i-го компонента в смеси; Σпi — суммарное число молей газа в системе.

Зависимость между объемной и мольной концентрациями компонентов вытекает из закона Авогадро. Так как равные объемы любых газов при одинаковых температуре и давлении содержат одинаковое число молекул, то объем i-го компонента смеси будет пропорционален числу молей i-го компонента:

, (2.18)

где К — коэффициент пропорциональности. Следовательно

, (2.19)

т. е. концентрация компонента в процентах по молям (% мол.) в смеси газов при атмосферном давлении практически совпадает с объемной концентрацией этого компонента в процентах (% об.).

При высоких давлениях жидкие углеводороды растворяются в газовой фазе (газовые растворы, газоконденсаты). Поэтому при высоких давлениях плотность газа может приближаться к плотности легких углеводородных жидкостей.

В зависимости от преобладания в нефтяных газах легких (метан, этан) или тяжелых (пропан и выше) углеводородов газы разделяются на сухие и жирные.

Сухимгазом называют природный газ, который не содержит тяжелых углеводородов или содержит их в незначительных количествах.

Жирным газом называют газ, содержащий тяжелые углеводороды в таких количествах, когда из него целесообразно получать сжиженные газы или газовые бензины.

На практике принято считать жирным газом такой, в 1 м 3 которого содержится более 60г газового бензина.

Газы, добываемые из чисто газовых месторождений, содержат более 95 % метана (табл. 2.2) и представляют собой, так называемые, сухие газы.

МесторождениеСН4С2Н6С3Н8С4Н10N2СО2Относит. плотность
Северо-Ставропольское98,90,290,160,050,40,20,56
Уренгойское98,840,10,030,031,70,30,56
Шатлыкское95,581,990,350,150,781,150,58
Медвежье98,780,10,021,00,10,56
Заполярное98,60,170,020,0131,10,180,56

Тяжёлым нефтям свойственны сухиепопутные газы с преобладанием метана в их составе. Например, содержание метана в составе попутного газа Русского месторождения Западной Сибири (плотность нефти более 920 кг/м 3 ) аналогично содержанию метана в составе газа газового Уренгойского месторождения и составляет около 98,8 об. %.

Содержание метана в газах газоконденсатных месторождений колеблется в интервале 75–95 % (табл. 2.3). Попутный газ газоконденсатных месторождений и лёгких нефтей достаточно жирный.

МесторождениеСН4С2Н6С3Н8С4Н10С5Н12N2СО2Отност. плотность
Вуктыльское74,808,703,901,806,404,300,100,882
Оренбургское84,005,001,600,701,803,50,50,680
Ямбургское89,674,391,640,742,360,260,940,713
Уренгойское (БУ–8, БУ–14)88,285,292,421,002,520,480,010,707

Газы, добываемые вместе с нефтью из нефтяных месторождений (попутные газы) представляют собой смесь метана, этана, пропан-бутановой фракции, газового бензина. При повышенном давлении углеводороды состава С3, С4 легко сжижаются. В пластовых условиях в газообразном состоянии находится практически один метан. При нормальных условиях углеводороды от метана СН4 до бутана С4Н10 находятся в газообразном состоянии. Остальные углеводороды при этих условиях — жидкости. Пропан и бутан при повышении давления легко переходят в жидкое состояние. Упругость насыщенных паров углеводородов, т. е. то давление, при котором газ начинает конденсироваться и переходить в жидкое состояние, повышается с ростом температуры и она тем выше, чем ниже плотность углеводорода. Упругость пара — нелинейная функция температуры. Графики на рис. 2.9 построены так, чтобы получить линейную зависимость между упругостью паров углеводородов и температурой: шкала упругости пара принята логарифмической, а температурная шкала (в °С) принята произвольной.

Удобство таких графиков заключается в том, что они позволяют легко и быстро определять по известной упругости пара при некоторой температуре упругость его паров при других температурах. Для этого проводят прямую линию через, известную точку и общую точку пересечения прямых упругостей паров (находящуюся вне графика на продолжении правой верхней части диаграммы).

Из рис. 2.9 следует, что давление паров метана наибольшее; при нормальных условиях его нельзя превратить в жидкость (пунктирная линия 1 давления ненасыщенного пара метана), так как его критическая температура t = -82,95° С. Давление насыщенных паров других углеводородов намного ниже. Например, бутан при t = — 20° С имеет упругость паров, равную 0,22 Мн/м 2 (2,2 кГ/см 2 ).

К расчёту физико-химических свойств газа как многокомпонентной смеси можно применять принцип аддитивности.

Аддитивный подход к расчёту физико-химических и технологических параметров означает, что каждый компонент газа в смеси ведёт себя так, как если бы он в данной смеси был один.

Следовательно, для оценки макроскопических свойств нефтяного газа (при н.у. и с.у.) применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси):

, (2.20)

где где Ni – мольная доля; gi – весовая доля; Vi – объёмная доля; Пi – физико-химическое свойство i-го компонента.

Для идеальных газов общее давление в системе (смеси газов) равно сумме парциальных давлений компонентов (закон Дальтона):

, (2.21)

где Р – общее давление смеси газов; рi – парциальное давление i-го компонента в смеси. Откуда

, (2.22)

. (2.23)

То есть, парциальное давление компонента в газовой смеси равно произведению его молярной доли на общее давление смеси газов.

Аддитивность парциальных объёмов (Vi) компонентов газовой смеси выражается законом Амага:

, (2.24)

где V – общий объём смеси газов; Vi – мольный объём i-го компонента газа в смеси.

По аналогии с уравнениями (2.22–2.23) мольный объём компонента в газе можно оценить:

. (2.25)

Как аддитивные величины рассчитывают все физико-химические свойства газа, например, плотность смеси газов:

, (2.26)

где ρi – плотность i–го компонента; Ni – мольная доля i–го компонента.

Уравнения состояния природных газов

Наука о веществе основывается на современных знаниях об атомах – мельчайших частицах элементов и молекулах – мельчайших частицах химических соединений. Атомы имеют размер порядка 10

8 см (одного ангстрема). Крупные молекулы, содержащие тысячи атомов, имеют размер около 10

6 см. Характер движения молекул и атомов, их взаимодействие определяют, в каком агрегатном состоянии находится вещество – в твердом, жидком или газообразном.

Молекулы могут совершать поступательное, вращательное и колебательное движение. Если вещество находится в газообразном или жидком состоянии, то возможны все три вида этих движений. Если же вещество затвердевает, преобладающей формой движения молекул и атомов становятся колебания.

При изучении состояния вещества стремятся найти взаимосвязь между давлением, при котором находится вещество, его плотностью и температурой. Если обозначить давление p, плотность ρ, а обратную ей величину – удельный объем вещества V и температуру Т, то состояние вещества будет характеризоваться соотношением р, V и Т или, как принято в термодинамике, -соотношением. Наиболее просто это соотношение выглядит для состояния вещества, при котором молекулы совершают поступательное движение в период между столкновениями друг с другом, а межмолекулярные силы заметно не проявляются. Такое состояние вещества характерно для достаточно разреженных газов. Вещество, находящееся в этом состоянии, называют идеальным газом. Для идеальных газов согласно уравнению Клапейрона – Менделеева

, (2.27)

где – давление, Па; – объем газа, м 3 , – масса газа, кг; – газовая постоянная, Дж/(кг • К); – абсолютная температура, К.

Газовая постоянная численно равна работе расширения 1 кг идеального газа в изобарическом процессе при увеличении температуры газа на 1 К.

При высоком сжатии газа его параметры уже не будут описываться уравнением состояния идеального газа. Ван-дер-Ваальсом были введены в уравнение состояния идеального газа (2.27) поправки: величина b, учитывающая объем самих молекул, и величина a/v 2 , учитывающая взаимодействие между молекулами. В результате было получено уравнение состояния «реального газа» (уравнение Ван-дер-Ваальса) в следующем виде:

. (2.28)

Сложность применения уравнения (2.28) для практических расчетов заключается в том, что в газонефтепромысловом деле встречаются, как правило, смеси газов, для которых уравнение Ван-дер-Ваальса применимо с трудом.

Хорошее согласование с экспериментальными данными для газов, плотность которых не превышает двух третей от плотности газа при критических условиях, получают по уравнению Битти-Бриджмена

, (2.29)

где а, Ь, с, Ао и Во — постоянные для данных компонентов природного газа, которые вычисляются на основании экспериментальных данных.

Коэффициент сверхсжимаемости. При большом числе компонентов расчеты по приведенным формулам становятся трудоемкими. Поэтому для расчета состояния реальных газов обычно пользуются обобщенным газовым законом в виде уравнения Клапейрона, в которое вводится поправка (коэффициент сверхсжимаемости), учитывающая отклонение реальных газов от законов сжатия и расширения идеальных газов.

, (2.30)

где z – коэффициент сверхсжимаемости; – масса газа в кг; р – давление в Па; V –объем газа в м 3 ; R – газовая постоянная в Дж/(кг*град); Т — абсолютная температура в К.

Характер изменения коэффициента сверхсжимаемости z, который показывает отношение объема реального газа к объему идеального при одних и тех же условиях, с изменением температуры и давления можно установить, учитывая отличия реальных газов от идеальных. В последних молекулы занимают незначительный объем (по сравнению с объемом газа) и не испытывают сил притяжения друг к другу. Молекулы же реальных газов обладают определенными размерами, массой и взаимодействуют друг с другом. Поэтому реальный газ приближается к идеальным при низких давлениях, когда число молекул в единице объема невелико. Следовательно, при низких давлениях величина коэффициента сжимаемости должна быть близка к единице. С повышением давления молекулы газа сближаются и силы притяжения между молекулами начинают помогать внешним силам, сжимающим газ. Вследствие этого реальные газы должны сжиматься сильнее, чем при тех же условиях сжимаются идеальные газы. Следовательно, с ростом давления коэффициент сжимаемости z должен вначале уменьшаться. Когда углеводородный газ сжат до такой степени, что он приближается по свойствам к жидкостям, межмолекулярные расстояния уменьшаются настолько, что начинают проявляться взаимоотталкивающие силы между молекулами, препятствующие дальнейшему уменьшению объема газа. В этих условиях углеводородный газ должен сжиматься меньше, чем при малых давлениях, т. е. значения z вновь возрастают при увеличении давления.

С приближением давления и температуры к их критическим значениям свойства газовой и жидких фаз становятся одинаковыми, поверхность раздела между ними исчезает и плотности их уравниваются.

Критическая температура (Ткр) – максимальная температура, при которой газ и жидкость могут ещё сосуществовать в равновесии (табл. 2.4).

Критическое давление – давление паров вещества при критической температуре (табл. 2.3), а объём вещества при данных Ткр и pкр, отнесённый к 1 молю или к единице массы вещества, называется критическим удельным объёмом.

Упругость насыщенных паров углеводородов, это давление, при котором газ начинает конденсироваться и переходить в жидкое состояние, повышается с ростом температуры и она тем выше, чем ниже плотность углеводорода.

Таблица 2.4 Критические давления и температуры компонентов нефтяных газов

№ п./п.КомпонентОтносит. моляр. массаРКРi, МПаТКРi, К
Метан, СН416,044,63190,55
Этан, С2Н630,074,87305,45
Пропан, С3Н844,094,26369,82
изо-Бутан, i-С4Н1058,123,65408,13
н-Бутан, n-С4Н1058,123,797425,16
изо-Пентан, i-С5Н1272,153,381460,4
н-Пентан, n-С5Н1272,153,369469,6
н-Гексан, С6Н1486,173,031507,4
н-Гептан, С7Н16100,202,736640,61
Азот, N228,023,399126,25
Двуокись углерода, СО244,017,387304,15
Сероводород, Н2S34,089,01373,55

Приведенные параметры газов.Коэффициент сжимаемости газов z, обычно определяют по экспериментальным графикам. Чтобы избежать построения графиков для каждого газа или их смесей, на основе экспериментальных данных составлен график изменения коэффициента z в зависимости от приведенной температуры и приведенного давления для метана (рис.2.2), который на основании закона соответственных состояний с достаточной точностью может быть использован для определения z, всех газов, состоящих на 95—96% из метана. Коэффициенты сжимаемости на этом графике поставлены в зависимость от приведенного давления p пр и приведенной температуры Tпр, которые определяются по формулам

где р и Т — давление и температура газа; рКрi и Tкрi — критические давление и абсолютная температура i-го компонента; = и – среднекритические (псевдокритические) абсолютная температура и давление; уi — мольная концентрация i-го компонента в газе.

Таким образом, рпр и Tпр выражают давление и абсолютную температуру в долях от соответствующих критических величин.

Контрольная работа: Основные свойства природных газов

Основные свойства природных газов. Уравнение состояния реальных газов.

Природные углеводородные газы представляют собой смесь предельных УВ вида Сn Н2 n +2 . Основным компонентом является метан СН4 , содержание которого в природных газах достигает 98%. Наряду с метаном в состав природных газов входят более тяжелые УВ, а также неуглеводородные компоненты: азот N, углекислый газ СО2 , сероводород H2 S, гелий Не, аргон Аг.

Природные газы подразделяют на следующие группы.

1. Газ, добываемый из чисто газовых месторождений и представляющий собой сухой газ, свободный от тяжелых УВ.

2. Газы, добываемые вместе с нефтью (растворенные или попутные газы). Это физические смеси сухого газа, пропан-бутановой фракции (жирного газа) и газового бензина.

3. Газы, добываемые из газоконденсатных месторождений,— смесь сухого газа и жидкого углеводородного конденсата. Углеводородный конденсат состоит из большого числа тяжелых УВ (С5 + высш., С6 + высш. и т.д.), из которых можно выделить бензиновые, лигроиновые, керосиновые, а иногда и более тяжелые масляные фракции.

4. Газы газогидратных залежей.

Компонентный состав и свойства отдельных компонентов природного газа приведены в таблице 1.

Таблица 1. Основные свойства компонентов природных газов в стандартных условиях.

Название: Основные свойства природных газов
Раздел: Рефераты по геологии
Тип: контрольная работа Добавлен 18:23:16 30 декабря 2008 Похожие работы
Просмотров: 2561 Комментариев: 20 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать

Объём 1 кг газа,

Масса 1 м 3 газа,

Во многих случаях состав природных углеводородных газов определяется не полностью, а лишь до бутана (С4 Н10 ) или гексана (С6 Н14 ) включительно, а все остальные компоненты объединяются в остаток (или псевдокомпонент) С5 + высш., С7 + высш.

Газ, в составе которого тяжелые УВ (С3 , С4 ) составляют не более 75 г/м 3 , называют сухим. При содержании тяжелых УВ более 150 г/м 3 газ называют жирным.

Газовые смеси характеризуются массовыми или молярными концентрациями компонентов. Для характеристики газовой смеси необходимо знать ее среднюю молекулярную массу, среднюю плотность в килограммах на кубический метр или относительную плотность по воздуху.

Молекулярная масса М природного газа:

,

где М – молекулярная масса i-го компонента; xi – объемное содержание i-го компонента, доли ед.

Для реальных газов обычно М=16 – 20.

Плотность газа ρг рассчитывается по формуле:

,

где Vм – объем 1 моля газа при стандартных условиях.

Обычно ρг находится в пределах 0,73 – 1,0 кг/м 3 .

Плотность газа в значительной степени зависит от давления и температуры, и поэтому для практического применения этот показатель неудобен. Чаще пользуются относительной плотностью газа по воздуху ρг.в. , равной отношению плотности газа ρг к плотности воздуха ρв , взятой при тех же давлении и температуре:

Если ρг и ρв определяются при стандартных условиях, то ρв = 1,293 кг/м 3 и ρг.в. = ρг / 1,293.

Плотность нефтяных газов колеблется от 0,554 (для метана) до 2,006 (для бутана) и выше.

Вязкость газа характеризует силы взаимодействия между молекулами газа, которые преодолеваются при его движении. Она увеличивается при повышении температуры, давления и содержания углеводородных компонентов. Однако при давлениях выше 3МПа увеличение температуры вызывает понижение вязкости газа.

Вязкость нефтяного газа незначительна и при 0 о С составляет 0,000131 пз; вязкость воздуха при 0 о С равна 0,000172 пз.

Уравнения состояния газов используются для определения многих физических свойств природных газов. Уравнением состояния называется аналитическая зависимость между параметрами газа, описывающая поведение газа. Такими параметрами являются давление, объем и температура.

Состояние идеальных газов в условиях высоких давления и температуры определяется уравнением Клапейрона — Менделеева:

,

где р — давление; Vи — объем идеального газа, N— число киломолей газа; R— универсальная газовая постоянная; Т — температура.

Идеальным называется газ, силами взаимодействия между молекулами которого пренебрегают. Реальные углеводородные газы не подчиняются законам идеальных газов. Поэтому уравнение Клапейрона—Менделеева для реальных газов записывается в виде:

где Z— коэффициент сверхсжимаемости реальных газов, зависящий от давления, температуры и состава газа и характеризующий степень отклонения реального газа от закона для идеальных газов.

Коэффициент сверхсжимаемости Zреальных газов — это отношение объемов равного числа молей реального Vи идеального Vи газов при одинаковых термобарических условиях (т. е. при одинаковых давлении и температуре):

Значения коэффициентов сверхсжимаемости наиболее надежно могут быть определены на основе лабораторных исследований пластовых проб газов. При отсутствии таких исследований (как это чаще всего бывает на практике) прибегают к расчетному методу оценки Zпо графику Г. Брауна (рис.1). Для пользования графиком необходимо знать так называемые приведенные псевдокритическое давление и псевдокритическую температуру. Критической называется такая температура, выше которой газ не может быть превращен в жидкость ни при каком давлении. Критическим давлением называется давление, соответствующее критической точке пере­хода газа в жидкое состояние.

С приближением значений давления и температуры к критическим свойства газовой и жидкой фаз становятся одинаковыми, поверхность раздела между ними исчезает и плотности их уравниваются.

С появлением в системе двух и более компонентов в закономерностях фазовых изменений возникают особенности, отличающие их поведение от поведения однокомпонентного газа. Не останавливаясь на подробностях, следует отметить, что критическая температура смеси находится между критическими температурами компонентов, а критическое давление смеси всегда выше, чем критическое давление любого компонента.

Для определения коэффициента сверхсжимаемости Z реальных газов, представляющих собой многокомпонентную смесь, находят средние из значений критических давлений и температур каждого компонента. Эти средние называются псевдокритическим давлением pп.кр. и псевдокритической температурой Тп.кр. Они определяются из соотношений:

; ;

где ркр. и Ткр. – критические давления и температура i-го компонента; xi – доля i-го компонента в объеме смеси (в долях единицы).

Приведенные псевдокритические давление и температура, необходимые для пользования графиком Брауна, представляют собой псевдокритические значения, приведенные к конкретным давлению и температуре (к пластовым, стандартным или каким-либо другим условиям):

где р и Т – конкретные давления и температура, для которых определяется Z.

Коэффициент сверхсжимаемости Z обязательно используется при подсчете запасов газа для правильного определения изменения объема газа при переходе от пластовых условий к поверхностным, при прогнозировании изменения давления в газовой залежи и при решении других задач.

Рис. 1. Графики зависимости коэффициента сверхсжимаемости Z углеводородного газа от приведенных псевдокритических давления рпр. и температуры Тпр. (по Г.Брауну).

Определить плотность и относительную плотность данной смеси по воздуху.

Дано: состав газа

СвойстваОбозна чениеСН1С2 Н6С3 Н8i-С4 Н10n-С4 Н10
названиеформула
метанСН48016,04
этанС2 Н6730,07
пропанС3 Н8344,1
изобутанС4 Н10358,12
Н-бутанС4 Н101,558,12
изопентанС5 Н12172,15
Н-пентанС5 Н120,472,15
гексанС6 Н14286,18
азотN22,128,01

Плотность газовой смеси ρсм – масса m единицы объема V или отношение молекулярной массы М к объему моля Vм

ρсм = m / V = М / Vм =М / 22,4 кг/м 3

Молекулярная масса М – отношение массы молекулы вещества к 1/12 массы атома изотопа углерода 12 С.

Молекулярная масса природного газа (газовой смеси)

, где

Мi – молекулярная масса i-того компонента смеси;

хi – объемное содержание i- того компонента.

Относительная плотность природного газа ρотн (по воздуху) – отношение плотности смеси ρсм к плотности воздуха ρв , взятых при одинаковых температуре и давлении (при стандартных условиях: t = 0 °С, Р = 0,1013 МПа):

При стандартных условиях ρв = 1,293 кг/м 3

Найдем общую молекулярную массу газовой смеси:

Ответ: ρсм = 0,991 кг/м 3 ; ρотн = 0,766 кг/м 3 .

Определить коэффициент сверхсжимаемости для газа.

Дано: состав газа

Состав газаформулаОбъемное содержание хi , %Критическая температура , ККритическое давление , МПа
МетанСН4621914,588
ЭтанС2 Н6153054,86
ПропанС3 Н8103704,34
АзотN210124,93,46
углекислотаCO23304,17,50

Решение.

Коэффициент сверхсжимаемости реальных газов – это отношение объемов равного числа молей реального и идеального газов при одинаковых термобарических условиях:

Наиболее достоверные значения коэффициентов сверхсжимаемости получаются на основе лабораторных исследований пластовых проб газов. В случае отсутствия этих исследований прибегают к расчетному методу оценки по графику Г. Брауна. Для использования графика необходимо знать приведенное псевдокритическое давление Рпр и приведенную псевдокритическую температуру Тпр данного газа.

При известном компонентном составе рассчитывают псевдокритические (средние критические) давление и температуру:

Затем находят приведенные псевдокритические давление и температуру при данных давлении Р и температуре Т.

По кривым Р.Брауна (рис. 1) находим коэффициент сжимаемости Z , который составляет ≈ 0,78.

1. Гиматудинов Ш.К. Физика нефтяного и газового пласта. Изд. «Недра». М. 1971г.

2. Гиматудинов Ш.К., Ширковский А.И. Физика нефтяного и газового пласта. Изд. «Недра». М. 1982г.

3. Котяхов Ф.И. Физика нефтяного и газового коллектора. Изд. «Недра». М. 1997г.

4. Мирзаджанзаде А.Х., Аметов И.М., Ковалев А.Г. Физика нефтяного и газового пласта. Изд. «Недра». М. 1982г.


источники:

http://poisk-ru.ru/s32782t11.html

http://www.bestreferat.ru/referat-178271.html