Уравнения, сводящиеся к квадратным уравнениям:
возвратные (симметричные) уравнения
Существует ряд уравнений, которые удается решить при помощи сведения их к квадратным уравнениям.
К таким уравнениям, в частности, относятся уравнения следующих типов:
Трёхчленные уравнения | |
Уравнения 4-ой степени, левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии | |
Возвратные (симметричные) уравнения 3-ей степени | |
Возвратные (симметричные) уравнения 4-ой степени | |
Обобщенные возвратные уравнения 4-ой степени |
Замечание . Уравнения, носящие название «Биквадратные уравнения» , относятся к типу «Трехчленные уравнения» .
Возвратные (симметричные) уравнения 3-ей степени
Возвратным уравнением 3-ей степени называют уравнение вида
a x 3 + b x 2 + b x + a = 0, | (1) |
где a , b – заданные числа.
Решение уравнения (1) осуществляется при помощи разложения левой части уравнения (1) на множители:
Для завершения решения уравнения (1) остаётся лишь решить квадратное уравнение
Пример 1 . Решить уравнение
2x 3 + 7x 2 + 7x + 2 = 0. | (2) |
Решение . Разложим левую часть уравнения (2) на множители:
Ответ :.
Возвратные (симметричные) уравнения 4-ой степени
Возвратными (симметричными) уравнениями 4-ой степени называют уравнения вида
a x 4 + b x 3 + cx 2 + + b x + a = 0, | (3) |
а также уравнения вида
a x 4 + b x 3 + cx 2 – – b x + a = 0, | (4) |
Для того, чтобы решить возвратное уравнение (3), разделим его на x 2 . В результате получится уравнение
Преобразуем левую часть уравнения (5):
В результате этого преобразования уравнение (5) принимает вид
Если теперь обозначить
(7) |
то уравнение (6) станет квадратным уравнением:
a y 2 + b y + c – 2 a = 0. | (8) |
Найдем корни уравнения (8), а после этого, подставив каждый из найденных корней в равенство (7), решим полученное уравнение относительно x .
Описание метода решения уравнений вида (3) завершено.
Для того, чтобы решить возвратное уравнение (4), разделим его на x 2 . В результате получится уравнение
Преобразуем левую часть уравнения (9):
В результате этого преобразования уравнение (9) принимает вид
Если теперь обозначить
(11) |
то уравнение (10) станет квадратным уравнением:
a y 2 + b y + c + 2 a = 0. | (12) |
Найдем корни уравнения (13), а после этого, подставив каждый из найденных корней в равенство (11), решим полученное уравнение относительно x .
Описание метода решения уравнений вида (4) завершено.
Пример 2 . Решить уравнение
2x 4 – 3x 3 – x 2 – – 3x + 2 = 0. | (13) |
Решение . Уравнение (13) является возвратным и относится к виду (3). Разделим его на x 2 . В результате получится уравнение
Преобразуем левую часть уравнения (14):
В результате этого преобразования уравнение (14) принимает вид
Если теперь обозначить
(16) |
то уравнение (15) станет квадратным уравнением:
2y 2 – 3y – 5 = 0. | (17) |
(18) |
В первом случае из равенства (16) получаем уравнение:
которое решений не имеет.
Во втором случае из равенства (16) получаем:
Ответ :
Пример 3 . Решить уравнение
6x 4 – 25x 3 + 12x 2 + + 25x + 6 = 0. | (19) |
Решение . Уравнение (19) является возвратным и относится к виду (4). Разделим его на x 2 . В результате получится уравнение
Преобразуем левую часть уравнения (20):
В результате этого преобразования уравнение (20) принимает вид
Если теперь обозначить
(22) |
то уравнение (21) станет квадратным уравнением:
6y 2 – 25y + 24 = 0. | (23) |
(24) |
В первом случае из равенства (22) получаем:
Во втором случае из равенства (22) получаем:
Ответ :
Обобщенные возвратные уравнения 4-ой степени
Обобщенным возвратным уравнением 4-ой степени назовём уравнение вида
где a , b , c, d – заданные числа.
Для того, чтобы решить уравнение (25), разделим его на x 2 . В результате получится уравнение
Преобразуем левую часть уравнения (26):
В результате этого преобразования уравнение (26) принимает вид
Если теперь обозначить
(28) |
то уравнение (27) станет квадратным уравнением:
(29) |
Найдем корни уравнения (29), а после этого, подставив каждый из найденных корней в равенство (28), решим полученное уравнение относительно x .
Описание метода решения уравнений вида (25) завершено.
Пример 4 . Решить уравнение
2x 4 – 15x 3 + 35x 2 – – 30 x + 8 = 0. | (30) |
Решение . Введем для коэффициентов уравнения (30) следующие обозначения
и найдем значение выражения
то уравнение (30) является обобщенным возвратным уравнением 4-ой степени. В соответствии с изложенным выше, разделим его на x 2 . В результате получится уравнение
Преобразуем левую часть уравнения (31):
В результате этого преобразования уравнение (31) принимает вид
Если теперь обозначить
(33) |
то уравнение (32) станет квадратным уравнением:
2y 2 – 15y + 27 = 0. | (34) |
В первом случае из равенства (33) получаем:
Во втором случае из равенства (33) получаем:
Ответ :
Решение уравнений четвертой степени
Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.
Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.
Решение двучленного уравнения четвертой степени
Это простейший тип уравнений четвертой степени. Запись уравнения имеет вид A x 4 + B = 0 .
Для решения этого типа уравнений применяются формулы сокращенного умножения:
A x 4 + B = 0 x 4 + B A = 0 x 4 + 2 B A x 2 + B A – 2 B A x 2 = 0 x 2 + B A 2 – 2 B A x 2 = 0 x 2 – 2 B A 4 x + B A x 2 + 2 B A 4 x + B A = 0
Остается лишь найти корни квадратных трехчленов.
Решить уравнение четвертой степени 4 x 4 + 1 = 0 .
Решение
Для начала проведем разложение многочлена 4 x 4 + 1 на множители:
4 x 4 + 1 = 4 x 4 + 4 x 2 + 1 = ( 2 x 2 + 1 ) 2 – 4 x 2 = 2 x 2 – 2 x + 1 ( 2 x 2 + 2 x + 1 )
Теперь найдем корни квадратных трехчленов.
2 x 2 – 2 x + 1 = 0 D = ( – 2 ) 2 – 4 · 2 · 1 = – 4 x 1 = 2 + D 2 · 2 = 1 2 + i x 2 = 2 – D 2 · 2 = 1 2 – i
2 x 2 + 2 x + 1 = 0 D = 2 2 – 4 · 2 · 1 = – 4 x 3 = – 2 + D 2 · 2 = – 1 2 + i x 4 = – 2 – D 2 · 2 = – 1 2 – i
Мы получили четыре комплексных корня.
Ответ: x = 1 2 ± i и x = – 1 2 ± i .
Решение возвратного уравнения четвертой степени
Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0
х = 0 не является корнем этого уравнения: A · 0 4 + B · 0 3 + C · 0 2 + B · 0 + A = A ≠ 0 . Поэтому на x 2 можно смело разделить обе части этого уравнения:
A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0
Проведем замену переменных x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 – 2 :
A x 2 + 1 x 2 + B x + 1 x + C = 0 A ( y 2 – 2 ) + B y + C = 0 A y 2 + B y + C – 2 A = 0
Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.
Найти все комплексные корни уравнения 2 x 4 + 2 3 + 2 x 3 + 4 + 6 x 2 + 2 3 + 2 x + 2 = 0 .
Решение
Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2 :
2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0
2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0
Проведем замену переменной x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 – 2
2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0 2 y 2 – 2 + 2 3 + 2 y + 4 + 6 = 0 2 y 2 + 2 3 + 2 y + 6 = 0
Решим полученное квадратное уравнение:
D = 2 3 + 2 2 – 4 · 2 · 6 = 12 + 4 6 + 2 – 8 6 = = 12 – 4 6 + 2 = 2 3 – 2 2 y 1 = – 2 3 – 2 + D 2 · 2 = – 2 3 – 2 + 2 3 – 2 4 = – 2 2 y 2 = – 2 3 – 2 – D 2 · 2 = – 2 3 – 2 – 2 3 + 2 4 = – 3
Вернемся к замене: x + 1 x = – 2 2 , x + 1 x = – 3 .
Решим первое уравнение:
x + 1 x = – 2 2 ⇒ 2 x 2 + 2 x + 2 = 0 D = 2 2 – 4 · 2 · 2 = – 14 x 1 = – 2 – D 2 · 2 = – 2 4 + i · 14 4 x 2 = – 2 – D 2 · 2 = – 2 4 – i · 14 4
Решим второе уравнение:
x + 1 x = – 3 ⇒ x 2 + 3 x + 1 = 0 D = 3 2 – 4 · 1 · 1 = – 1 x 3 = – 3 + D 2 = – 3 2 + i · 1 2 x 4 = – 3 – D 2 = – 3 2 – i · 1 2
Ответ: x = – 2 4 ± i · 14 4 и x = – 3 2 ± i · 1 2 .
Решение биквадратного уравнения
Биквадратные уравнения четвертой степени имеют вид A x 4 + B x 2 + C = 0 . Мы можем свести такое уравнение к квадратному A y 2 + B y + C = 0 путем замены y = x 2 . Это стандартный прием.
Решить биквадратное уравнение 2 x 4 + 5 x 2 – 3 = 0 .
Решение
Выполним замену переменной y = x 2 , что позволит нам свести исходное уравнение к квадратному:
2 y 2 + 5 y – 3 = 0 D = 5 2 – 4 · 2 · ( – 3 ) = 49 y 1 = – 5 + D 2 · 2 = – 5 + 7 4 = 1 2 y 2 = – 5 – D 2 · 2 = – 5 – 7 4 = – 3
Следовательно, x 2 = 1 2 или x 2 = – 3 .
Первое равенство позволяет нам получить корень x = ± 1 2 . Второе равенство не имеет действительных корней, зато имеет комплексно сопряженных корней x = ± i · 3 .
Ответ: x = ± 1 2 и x = ± i · 3 .
Найти все комплексные корни биквадратного уравнения 16 x 4 + 145 x 2 + 9 = 0 .
Решение
Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:
16 y 2 + 145 y + 9 = 0 D = 145 2 – 4 · 16 · 9 = 20449 y 1 = – 145 + D 2 · 16 = – 145 + 143 32 = – 1 16 y 2 = – 145 – D 2 · 16 = – 145 – 143 32 = – 9
Поэтому, в силу замены переменной, x 2 = – 1 16 или x 2 = – 9 .
Ответ: x 1 , 2 = ± 1 4 · i , x 3 , 4 = ± 3 · i .
Решение уравнений четвертой степени с рациональными корнями
Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».
Решение уравнений четвертой степени по методу Феррари
Уравнения четвертой степени вида x 4 + A x 3 + B x 2 + C x + D = 0 в общем случае можно решить с применением метода Феррари. Для этого необходимо найти y 0 . Это любой из корней кубического уравнения y 3 – B y 2 + A C – 4 D y – A 2 D + 4 B D – C 2 = 0 . После этого необходимо решить два квадратных уравнения x 2 + A 2 x + y 0 2 + A 2 4 – B + y 0 x 2 + A 2 y 0 – C x + y 0 2 4 – D = 0 , у которых подкоренное выражение является полным квадратом.
Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.
Найти корни уравнения x 4 + 3 x 3 + 3 x 2 – x – 6 = 0 .
Решение
Имеем А = 3 , В = 3 , С = – 1 , D = – 6 . Применим метод Феррари для решения данного уравнения.
Составим и решим кубическое уравнение:
y 3 – B y 2 + A C – 4 D y – A 2 D + 4 B D – C 2 = 0 y 3 – 3 y 2 + 21 y – 19 = 0
Одним из корней кубического уравнения будет y 0 = 1 , так как 1 3 – 3 · 1 2 + 21 · 1 – 19 = 0 .
Запишем два квадратных уравнения:
x 2 + A 2 x + y 0 2 ± A 2 4 – B + y 0 x 2 + A 2 y 0 – C x + y 0 2 4 – D = 0 x 2 + 3 2 x + 1 2 ± 1 4 x 2 + 5 2 x + 25 4 = 0 x 2 + 3 2 x + 1 2 ± 1 2 x + 5 2 2 = 0
x 2 + 3 2 x + 1 2 + 1 2 x + 5 2 = 0 или x 2 + 3 2 x + 1 2 – 1 2 x – 5 2 = 0
x 2 + 2 x + 3 = 0 или x 2 + x – 2 = 0
Корнями первого уравнения будут x = – 1 ± i · 2 , корнями второго х = 1 и х = – 2 .
Ответ: x 1 , 2 = – 1 ± i 2 , x 3 = 1 , x 4 = – 2 .
ТЕМА «СИММЕТРИЧЕСКИЕ И ВОЗВРАТНЫЕ УРАВНЕНИЯ»
элективный курс по алгебре (10 класс) по теме
Лекция 1. Симметрические уравнения третьей и четвертой степени.
Лекция 2. Возвратные уравнения.
Лекция 3. Уравнения четвертой степени с дополнительными условиями на коэффициенты.
Семинар 1. Решение симметрических и возвратных уравнений.
Практическая работа 1. Решение симметрических уравнений.
Практическая работа 2. Решение возвратных уравнений.
Самостоятельная работа. Решение симметрических и возвратных уравнений.
Скачать:
Вложение | Размер |
---|---|
razrabotka_temy_elektivnogo_predmeta.rar | 8.9 КБ |
Предварительный просмотр:
ТЕМА «СИММЕТРИЧЕСКИЕ И ВОЗВРАТНЫЕ УРАВНЕНИЯ»
Учитель математики МБОУ СОШ № 34 г. Тихорецка Мирошниченко В.Н.
ТЕМА 3 «СИММЕТРИЧЕСКИЕ И ВОЗВРАТНЫЕ УРАВНЕНИЯ»
Лекция 1. Симметрические уравнения третьей и четвертой степени.
Лекция 2. Возвратные уравнения.
Лекция 3. Уравнения четвертой степени с дополнительными условиями на коэффициенты.
Семинар 1 . Решение симметрических и возвратных уравнений.
Практическая работа 1. Решение симметрических уравнений.
Практическая работа 2 . Решение возвратных уравнений.
Самостоятельная работа . Решение симметрических и возвратных уравнений.
Методическая разработка первого занятия по данной теме.
Цель изучения данной темы:
– расширить знания о видах уравнений;
– познакомить с методами их решения;
– учить решать трудные задачи.
Лекция 1. Симметрические уравнения третьей и четвертой степени.
ах 3 + вх 2 + вх + а = 0, а ≠ 0, (1)
называются симметрическими уравнениями третьей степени . Поскольку ах 3 + вх 2 + вх + а = а (х 3 + 1) + вх (х+1) = а (х+ 1) (х 2 – х+ 1) + вх (х+ 1) = (х+1) (ах 2 + (в – а) х + а), то уравнение (1) равносильно совокупности уравнений
х + 1 = 0 и ах 2 + (в – а) х + а = 0, решить которую просто.
Пример 1. Решить уравнение
3х 3 + 4х 2 + 4х + 3 = 0.
Уравнение является симметрическим уравнением третьей степени. Разложим на множители левую часть уравнения
3х 3 + 4х 2 + 4х + 3 = 3 (х 3 + 1) + 4х (х + 1) = ( х + 1) (3х 3 – 3х + 3 + 4х) = ( х+ 1) (3х 3 + х + 3).
Уравнение равносильно совокупности уравнений
х + 1 = 0 и 3х 3 + х + 3 = 0,
ах 4 + вх 3 + сх 2 + вх + а = 0 , а≠ 0,
называются симметрическими уравнениями четвертой степени.
Поскольку х = 0 не является корнем уравнения , то , разделив обе части уравнения на х 2 , получим уравнение . равносильное исходному:
ах 2 + а/х 2 + вх + в/х + с = 0.
Перепишем уравнение в виде:
а [(х + 1/х) 2 – 2 ] + в ( х + 1/х) + с = 0.
В этом уравнении сделаем замену х + 1/х = у. тогда получим квадратное уравнение
ау 2 + ву +с – 2а = 0.
Если уравнение имеет два корня у 1 и у 2 , то исходное уравнение равносильно совокупности уравнений
х 2 – х у 1 + 1 = 0 и х 2 – х у 2 + 1 = 0.
Если же уравнение имеет один корень у 0 , то исходное уравнение равносильно уравнению х 2 – у 0 х = 1 = 0.
Если уравнение не имеет корней, то и исходное уравнение не имеет корней.
Пример 2. Решить уравнение
х 4 – 5х 3 + 8х 2 – 5х- 1 =0.
Решение. Данное уравнение является симметрическим уравнением четвертой степени. Так как х= 0 не является его корнем, то , разделив уравнение на х 2 ,получим равносильное ему уравнение
х 2 – 5х + 8 – 5/х + 1/ х 2 = 0.
Сгруппировав слагаемые, перепишем уравнение в виде
(х 2 + 1/ х 2 ) 2 – 5 (х + 1/х) + 6 =0.
Пусть х + 1/х = у, получим уравнение
имеющее два корня у 1 = 2, у 2 = 3. Следовательно, исходное уравнение равносильно совокупности уравнений
х + 1/х =2 и х + 1/х =3.
Решение первого уравнения этой совокупности есть х 1 = 1, а решения второго есть х 2 =(3+√5)/2, х 3 =(3-√5)/2.
Следовательно, исходное уравнение имеет три корня.
Ответ: х 1 = 1, х 2 =(3+√5)/2, х 3 =(3-√5)/2.
- Домашнее задание: рассмотреть решение уравнений;
А) 7х 3 – 5х 2 – 5х + 7 = 0,
Б) 3х 3 + 4х 2 – 4х – 3 = 0,
С) 3х 4 – 4х 3 + 2х 2 – 4х + 3=0,
Д) х 4 +4х 3 – 2х 2 –+4х + 1=0.
По теме: методические разработки, презентации и конспекты
Занятие по теме “Решение простейших тригонометрических уравнений. Уравнение tgx=a”
Занятие проводилось в рамках программы ШТК по математике. Презентация выполнена в программе Смарт и демонстрируется на интерактивной доске.Архив содержит все необходимые материалы.
урок по теме “Примеры решения тригонометрических уравнений и систем уравнений”
Класс 10Урок закрепления.
Тема 15. ИТОГОВЫЙ КОНТРОЛЬ ПО ТЕМАМ 9-14: “Показательные уравнения. Показательно-степенные уравнения. Показательные неравенства. Преобразования и вычисления логарифмических выражений. Логарифмические уравнения. Логарифмические неравенства”.
Уважаемые коллеги!Актуальной задачей на сегодняшний день является качественная подготовка учащихся к единому государственному экзамену (ЕГЭ) по математике, а также абитуриентов к вступител.
урок по теме “Способы решения тригонометрических уравнений”(урок одного уравнения) 08.03.16
методическая разработка урока алгебры и начал математического анализа в 10 классе по УМК Мордкович, содержит спсобы решения тригонометрического уравнения вида asinx +bcosx=c.
Дидактический материал по темам: “Логарифмическая функция. Логарифмические уравнения, неравенства и системы”, “Показательная функция. Показательные уравнения, системы и неравества”
Тренировочные задания по темам:«Показательная функция. Показательные уравнения, неравенства и системы»«Логарифмическая функция. Логарифмические уравнения, неравенства и системы»Данный дидак.
Презентации по теме “Системы двух линейных уравнений”, “Метод подстановки для решения систем уравнений”, “Метод сложения для решения систем уравнений” .
Презентации проедполагает использование при проведении онлайн урока по теме “Системы двух линейных уравнений”, “Метод подстановки для решения систем уравнений”, “Метод сложени.
Научная статья на тему: “Симметрические многочлены”
Научная статья на тему: “Симметрические многочлены".
http://zaochnik.com/spravochnik/matematika/systems/reshenie-uravnenij-chetvertoj-stepeni/
http://nsportal.ru/shkola/algebra/library/2013/03/28/tema-simmetricheskie-i-vozvratnye-uravneniya