Что значит в уравнениях i комплексных числах

Решение уравнений с комплексными числами

Итак, необходимо решить уравнение с комплексными переменными, найти корни этого уравнения. Рассмотрим принцип решения комплексных уравнений, научимся извлекать корень из комплексного числа.

Для того, чтобы решить уравнение n-й степени с комплексными числами, используем общую формулу:


где |z| — модуль числа, φ = arg z — главное значение аргумента, n — степень корня, k — параметр, принимает значения : k = <0, 1, 2, 3, …n-1 >.

Пример 1. Найти все корни уравнения

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня третьей степени из комплексного числа

Воспользуемся общей формулой для вычисления корней степени n комплексного числа z. Найдем все необходимые значения для формулы:


Подставим найденные значения в формулу:

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения.

Пример 2. Найти все корни уравнения

Найдем дискриминант уравнения:


Поскольку дискриминант отрицательный, уравнение имеет два комплексно-сопряженных корня. Вычислим корень из дискриминанта:

Найдем корни уравнения:


Ответ:

Пример 3. Найти все корни уравнения

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня четвертой степени из комплексного числа

Вновь используем общую формулу для нахождения корней уравнения n степени комплексного числа z.
n = 4 — количество корней данного уравнения. k = <0, 1, 2, 3>. Найдем модуль комплексного числа:

Подставим найденные значения в формулу:

Последовательно подставляя вместо k значения 0, 1, 2, 3 найдем все 4 корня уравнения:

Пример 4. Найти корни уравнения


Решение кубического уравнения комплексными числами:

Воспользуемся общей формулой для вычисления корней степени 3 комплексного числа z.

Найдем все необходимые значения для формулы:


Подставим найденные значения в формулу:

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения:

Домашнее задание: Самостоятельно составить и решить уравнение с комплексными числами.

Условия: переменная z должна быть «спрятана» и представлена в качестве аргумента тригонометрической функции косинуса. Чтобы привести данное уравнение к привычной форме, нужно «вытащить» z, а для этого необходимо помнить, как решаются тригонометрические уравнения,а также знать, как применять свойства логарифмической функции от комплексного числа.

После того, как мы решили тригонометрическое уравнение с комплексным числом, получаем «голый» z, который представлен в качестве аргумента обратной тригонометрической функции. Чтобы преобразовать данное выражение, нужно использовать формулу разложения арккосинуса в логарифм.

Вместо z — выражение (3i/4) и дальше все делаем по приведенной выше формуле, преобразовывая выражение под корнем, используя свойства мнимой единицы i.

Как быть далее? Теперь будем использовать формулу для решения выражения с натуральным логарифмом.

Для того чтобы найти корни логарифмического уравнения, нужно найти модуль комплексного числа |z| и его аргумент φ = arg z. По сути, перед нами чисто мнимое число.

Теперь предлагаем ознакомиться с формулами, которые могут пригодиться при решении уравнений или неравенств с комплексными числами. Это формулы, где комплексное число выступает в роли аргумента тригонометрической функции, логарифмической функции или показательной функции.

Выражения, уравнения и системы уравнений
с комплексными числами

Сегодня на занятии мы отработаем типовые действия с комплексными числами, а также освоим технику решения выражений, уравнений и систем уравнений, которые эти числа содержат. Данный практикум является продолжением урока Комплексные числа для чайников, и поэтому если вы неважно ориентируетесь в теме, то, пожалуйста, пройдите по указанной выше ссылке. Ну а более подготовленным читателям предлагаю сразу же разогреться:

Упростить выражение , если . Представить результат в тригонометрической форме и изобразить его на комплексной плоскости.

Решение: итак, требуется подставить в «страшную» дробь, провести упрощения, и перевести полученное комплексное число в тригонометрическую форму. Плюс чертёж.

Как лучше оформить решение? С «навороченным» алгебраическим выражением выгоднее разбираться поэтапно. Во-первых, меньше рассеивается внимание, и, во-вторых, если таки задание не зачтут, то будет намного проще отыскать ошибку.

1) Сначала упростим числитель. Подставим в него значение , раскроем скобки и поправим причёску:

…Да, такой вот Квазимодо от комплексных чисел получился…

Напоминаю, что в ходе преобразований используются совершенно бесхитростные вещи – правило умножения многочленов и уже ставшее банальным равенство . Главное, быть внимательным и не запутаться в знаках.

2) Теперь на очереди знаменатель. Если , то:

Заметьте, в какой непривычной интерпретации использована формула квадрата суммы . Как вариант, здесь можно выполнить перестановку под формулу . Результаты, естественно, совпадут.

3) И, наконец, всё выражение. Если , то:

Чтобы избавиться от дроби, умножим числитель и знаменатель на сопряженное знаменателю выражение. При этом в целях применения формулы разности квадратов следует предварительно (и уже обязательно!) поставить отрицательную действительную часть на 2-е место:

А сейчас ключевое правило:

НИ В КОЕМ СЛУЧАЕ НЕ ТОРОПИМСЯ! Лучше перестраховаться и прописать лишний шаг.
В выражениях, уравнениях и системах с комплексными числами самонадеянные устные вычисления чреваты, как никогда!

На завершающем шаге произошло хорошее сокращение и это просто отличный признак.

Примечание: строго говоря, здесь произошло деление комплексного числа на комплексное число 50 (вспоминаем, что ). Об этом нюансе я умалчивал до сих пор и о нём мы ещё поговорим чуть позже.

Обозначим наше достижение буквой

Представим полученный результат в тригонометрической форме. Вообще говоря, здесь можно обойтись без чертежа, но коль скоро, требуется – несколько рациональнее выполнить его прямо сейчас:

Вычислим модуль комплексного числа:

Если выполнять чертёж в масштабе 1 ед. = 1 см (2 тетрадные клетки), то полученное значение легко проверить с помощью обычной линейки.

Найдём аргумент. Так как число расположено во 2-й координатной четверти , то:

Угол элементарно проверяется транспортиром. Вот в чём состоит несомненный плюс чертежа.

Таким образом: – искомое число в тригонометрической форме.

Выполним проверку:
, в чём и требовалось убедиться.

Незнакомые значения синуса и косинуса удобно находить по тригонометрической таблице.

Ответ:

Аналогичный пример для самостоятельного решения:

Упростить выражение , где . Изобразить полученное число на комплексной плоскости и записать его в показательной форме.

Постарайтесь не пропускать учебные примеры. Кажутся-то они, может быть, и простыми, но без тренировки «сесть в лужу» не просто легко, а очень легко. Поэтому «набиваем руку».

Краткое решение и ответ в конце урока.

Нередко задача допускает не единственный путь решения:

Решение: прежде всего, обратим внимание на оригинальное условие – одно число представлено в алгебраической, а другое – в тригонометрической форме, да ещё и с градусами. Давайте сразу перепишем его в более привычном виде: .

В какой форме проводить вычисления? Выражение , очевидно, предполагает первоочередное умножение и дальнейшее возведение в 10-ю степень по формуле Муавра, которая сформулирована для тригонометрической формы комплексного числа. Таким образом, представляется более логичным преобразовать первое число. Найдём его модуль и аргумент:

Используем правило умножения комплексных чисел в тригонометрической форме:
если , то

Далее применяем формулу Муавра , которая является следствием указанного выше правила:

Делая дробь правильной, приходим к выводу, что можно «скрутить» 4 оборота ( рад.):

Второй способ решения состоит в том, чтобы перевести 2-е число в алгебраическую форму , выполнить умножение в алгебраической форме, перевести результат в тригонометрическую форму и воспользоваться формулой Муавра.

Как видите, одно «лишнее» действие. Желающие могут довести решение до конца и убедиться, что результаты совпадают.

В условии ничего не сказано о форме итогового комплексного числа, поэтому:

Ответ:

Но «для красоты» либо по требованию результат нетрудно представить и в алгебраической форме:

Здесь нужно вспомнить действия со степенями, хотя одного полезного правила в методичке нет, вот оно: .

И ещё одно важное замечание: пример можно решить в двух стилях. Первый вариант – работать с двумя числами и мириться с дробями. Второй вариант – представить каждое число в виде частного двух чисел: и избавиться от четырёхэтажности. С формальной точки зрения без разницы, как решать, но содержательное отличие есть! Пожалуйста, хорошо осмыслите:
– это комплексное число;
– это частное двух комплексных чисел ( и ), однако в зависимости от контекста можно сказать и так: число , представленное в виде частного двух комплексных чисел.

Краткое решение и ответ в конце урока.

Выражения – хорошо, а уравнения – лучше:

Уравнения с комплексными коэффициентами

Чем они отличаются от «обычных» уравнений? Коэффициентами =)

В свете вышеприведённого замечания начнём с этого примера:

И незамедлительная преамбула по «горячим следам»: изначально правая часть уравнения позиционируется, как частное двух комплексных чисел ( и 13), и поэтому будет нехорошим тоном переписать условие с числом (хотя это и не повлечёт ошибки). Более явственно данное различие, кстати, просматривается в дроби – если, условно говоря, , то это значение в первую очередь понимается как «полноценный» комплексный корень уравнения, а не как делитель числа , и тем более – не как часть числа !

Решение, в принципе, тоже можно оформить пошагово, но в данном случае овчинка выделки не стОит. Первоначальная задача состоит в том, чтобы упростить всё, что не содержит неизвестной «зет», в результате чего уравнение сведётся к виду :

Уверенно упрощаем среднюю дробь:

Результат переносим в правую часть и находим разность:

Примечание: и вновь обращаю ваше внимание на содержательный момент – здесь мы не вычли из числа число, а подвели дроби к общему знаменателю! Следует отметить, что уже в ХОДЕ решения не возбраняется работать и с числами: , правда, в рассматриваемом примере такой стиль скорее вреден, чем полезен =)

По правилу пропорции выражаем «зет»:

Теперь можно снова разделить и умножить на сопряжённое выражение, но подозрительно похожие числа числителя и знаменателя подсказывают следующий ход:

Ответ:

В целях проверки подставим полученное значение в левую часть исходного уравнения и проведём упрощения:

– получена правая часть исходного уравнения, таким образом, корень найден верно.

…Сейчас-сейчас… подберу для вас что-нибудь поинтереснее… держите:

Данное уравнение сводится к виду , а значит, является линейным. Намёк, думаю, понятен – дерзайте!

Конечно же… как можно без него прожить:

Квадратное уравнение с комплексными коэффициентами

На уроке Комплексные числа для чайников мы узнали, что квадратное уравнение с действительными коэффициентами может иметь сопряжённые комплексные корни, после чего возникает закономерный вопрос: а почему, собственно, сами коэффициенты не могут быть комплексными? Сформулирую общий случай:

Квадратное уравнение с произвольными комплексными коэффициентами (1 или 2 из которых либо все три могут быть, в частности, и действительными) имеет два и только два комплексных корня (возможно один из которых либо оба действительны). При этом корни (как действительные, так и с ненулевой мнимой частью) могут совпадать (быть кратными).

Квадратное уравнение с комплексными коэффициентами решается по такой же схеме, что и «школьное» уравнение, с некоторыми отличиями в технике вычислений:

Найти корни квадратного уравнения

Решение: на первом месте расположена мнимая единица, и, в принципе, от неё можно избавиться (умножая обе части на ), однако, в этом нет особой надобности.

Для удобства выпишем коэффициенты:

Не теряем «минус» у свободного члена! …Может быть не всем понятно – перепишу уравнение в стандартном виде :

А вот и главное препятствие:

Применение общей формулы извлечения корня (см. последний параграф статьи Комплексные числа для чайников) осложняется серьёзными затруднениями, связанными с аргументом подкоренного комплексного числа (убедитесь сами). Но существует и другой, «алгебраический» путь! Корень будем искать в виде:

Возведём обе части в квадрат:

Два комплексных числа равны, если равны их действительные и их мнимые части. Таким образом, получаем следующую систему:

Систему проще решить подбором (более основательный путь – выразить из 2-го уравнения – подставить в 1-е, получить и решить биквадратное уравнение). Предполагая, что автор задачи не изверг, выдвигаем гипотезу, что и – целые числа. Из 1-го уравнения следуют, что «икс» по модулю больше, чем «игрек». Кроме того, положительное произведение сообщает нам, что неизвестные одного знака. Исходя из вышесказанного, и ориентируясь на 2-е уравнение, запишем все подходящие ему пары:

Очевидно, что 1-му уравнению системы удовлетворяют две последние пары, таким образом:

Не помешает промежуточная проверка:

что и требовалось проверить.

В качестве «рабочего» корня можно выбрать любое значение. Понятно, что лучше взять версию без «минусов»:

Находим корни, не забывая, кстати, что :

Ответ:

Проверим, удовлетворяют ли найденные корни уравнению :

Таким образом, решение найдено правильно.

По мотивам только что разобранной задачи:

Найти корни уравнения

Следует отметить, что квадратный корень из чисто комплексного числа прекрасно извлекается и с помощью общей формулы , где , поэтому в образце приведены оба способа. Второе полезное замечание касается того, что предварительное извлечение корня из константы ничуть не упрощает решение.

А теперь можно расслабиться – в этом примере вы отделаетесь лёгким испугом 🙂

Решить уравнение и выполнить проверку

Решения и ответы в конце урока.

Заключительный параграф статьи посвящён

системе уравнений с комплексными числами

Расслабились и… не напрягаемся =) Рассмотрим простейший случай – систему двух линейных уравнений с двумя неизвестными:

Решить систему уравнений. Ответ представить в алгебраической и показательной формах, изобразить корни на чертеже.

Решение: уже само условие подсказывает, что система имеет единственное решение, то есть, нам нужно найти два числа , которые удовлетворяют каждому уравнению системы.

Систему реально решить «детским» способом (выразить одну переменную через другую), однако гораздо удобнее использовать формулы Крамера. Вычислим главный определитель системы:

, значит, система имеет единственное решение.

Повторюсь, что лучше не торопиться и прописывать шаги максимально подробно:

Домножаем числитель и знаменатель на мнимую единицу и получаем 1-й корень:

Перед тем, как продолжать дальше, целесообразно проверить решение. Подставим найденные значения в левую часть каждого уравнения системы:

Получены соответствующие правые части, ч.т.п.

Представим корни в показательной форме. Для этого нужно найти их модули и аргументы:

1) – арктангенс «двойки» вычисляется «плохо», поэтому так и оставляем:

Ответ:

Решить систему уравнений

Найти произведение корней и представить его в тригонометрической форме.

Краткое решение совсем близко.

И в заключение ответим на экзистенциальный вопрос: для чего нужны комплексные числа? Комплексные числа нужны для расширения сознания выполнения заданий других разделов высшей математики, кроме того, они используются во вполне материальных инженерно-технических расчетах на практике.

На этом курс Опытного пользователя комплексных чисел завершён – сертификат вам на стену и новых достижений!

Решения и ответы:

Пример 2: Решение: если , то:

Умножим числитель и знаменатель на сопряжённое знаменателю выражение:

Изобразим полученное число на чертеже:

Представим ответ в показательной форме. Найдем модуль и аргумент данного числа:

Поскольку число расположено в 3-й четверти, то:

Таким образом:
Ответ:

Пример 4: Решение:

Пример 6: Решение:

Умножим обе части уравнения на :

Ответ:

Пример 8: Решение:
Первый способ: корни уравнения ищем в виде:

Возведём обе части в квадрат:

Комплексные числа равны, если равны их действительные и их мнимые части:

Из 1-го уравнения следует, что:
1) , но это не удовлетворяет 2-му уравнению (равенство выполняется только в том случае, если и одного знака);
2) – подставим во 2-е уравнение:

Таким образом: либо
Ответ:

Второй способ: используем формулу . В данном случае :

Найдём модуль и аргумент комплексного числа:
;
очевидно, что .
Таким образом:

Ответ:

Пример 9: Решение: . Вычислим дискриминант:

Таким образом:

Ответ:

Проверка: подставим в исходное уравнение :

верное равенство;

верное равенство.
Что и требовалось проверить.

Пример 11: Решение: систему решим методом Крамера:

Таким образом, система имеет единственное решение.
Найдём произведение корней:

Представим результат в тригонометрической форме:

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Комплексные числа на ЕГЭ по математике

Что такое комплексные числа

Все знают, что ЕГЭ по математике Профильного уровня в ближайшие годы будет меняться. Например, предлагается добавить в школьную программу по математике тему «Комплексные числа». Но что же это такое?

Начнем с хорошо известных вам фактов.

Вспомним, что возвести число в квадрат — значит умножить его само на себя.

Если положительное число возвести в квадрат — результат будет положительный.

Если отрицательное число возвести в квадрат — результат тоже положительный. «Минус на минус дает плюс», — это мы не раз слышали на уроках математики.

Например, уравнение имеет 2 решения: х = 2 и х = -2.

Число 2 называют арифметическим квадратным корнем из 4, то есть

А можно ли какое-нибудь число возвести в квадрат, чтобы результат получился отрицательный? И если нет, то почему?

Ведь отрицательные числа ничем не хуже положительных. Баланс мобильного телефона может быть положительным или отрицательным. Температура может быть равна +5 градусов Цельсия, а может быть и минус 5 градусов. На числовой оси положительные и отрицательные числа расположены симметрично. Почему же из положительных чисел квадратный корень извлекать можно, из нуля тоже можно (он равен нулю), а из отрицательных нельзя?

А что, если — сказали однажды математики, — существует такое число, квадрат которого равен минус единице?

И называется это число мнимой единицей, а обозначается буквой

Вот какая необычная формула получилась:

Получается, что уравнение имеет 2 решения: i и минус i.

А уравнение имеет решения — 2i и 2i.

Теперь нам не страшны квадратные уравнения, в которых дискриминант отрицателен.

Его дискриминант равен 1 — 4 = — 3.

Числа вида называются комплексными. При этом х называется действительной частью комплексного числа z, а у — его мнимой частью.

Записывается это так:

Сокращения понятны тем, кто изучает английский: Re — Real, Im — Imaginary.

Помните, мы говорили о том, какие бывают числа?

Натуральные числа применяются для счета предметов. Множество натуральных чисел обозначается N.

Целые числа — это положительные, отрицательные и ноль. Например, 4, 78, -121, 0 — целые числа. Множество целых чисел Z содержит в себе множество натуральных.

Рациональные числа — те, которые можно записать в виде обыкновенной дроби вида р/q, где р — целое, q — натуральное. Например, — числа рациональные. Мы проходили их в начальной и средней школе. Если рациональное число записать в виде десятичной дроби, она будет периодической, например, Множество рациональных чисел обозначается Q и содержит в себе множество целых чисел.

В старших классах мы узнали об иррациональных числах — таких, как или Их невозможно записать в виде обыкновенной дроби, а если выразить в виде десятичной — она будет бесконечной непериодической. И казалось, что мы знаем о числах всё. Все числа, какие только нам встречались, входили в множество действительных чисел R.

Когда мы пишем: — это значит, что число х действительное. Мы помним, что действительные числа можно изображать точками на числовой прямой, которую еще называют действительной осью.

А теперь оказывается, что R — это подмножество множества комплексных чисел С.

Действительные числа еще называют «вещественными». Они описывают наш вещественный мир. В самом деле, натуральные числа применяем для счета предметов. С дробями тоже понятно: половинка яблока или пиццы. С отрицательными числами все знакомы: достаточно зимой посмотреть на градусник за окном. И даже иррациональные числа можно «увидеть»: например, длина окружности радиуса 1 или диагональ квадрата со стороной 1 являются иррациональными числами.

Но где же в мире — мнимые и комплексные числа? Неужели они нужны для описания того, что мы не можем потрогать или посчитать по пальцам?

Да, так и есть. Комплексные числа — удобный инструмент для построения математических моделей волн и колебаний. Электро- и радиотехника, теоретическая и квантовая физика — все они пользуются комплексными числами. Мир элементарных частиц живет по законам, описываемым функциями комплексных переменных. Так что продолжим их изучение.

Комплексная плоскость

Где же находятся мнимые числа, если на числовой прямой для них места нет?

Очень просто. Мнимые числа — на мнимой оси. А комплексные числа вида — на комплексной плоскости.

Каждому комплексному число соответствует точка на комплексной плоскости.

Расстояние от нуля до этой точки называется модулем комплексного числа:

Угол между направлением на эту точку и положительным направлением действительной оси называется аргументом комплексного числа:

Аргумент комплексного числа определен с точностью до

Аналогично в тригонометрии: каждая точка на единичной окружности соответствует бесконечному множеству углов, отличающихся на где k — целое.

— главное значение аргумента

Иногда главное значение аргумента комплексного числа определяют на отрезке

Если не определен.

Комплексное число можно записать как в алгебраической форме так и в тригонометрической.

Это тригонометрическая форма записи комплексного числа.

При переходе от алгебраической формы записи к тригонометрической считаем, что принимает значения

Обратите внимание, что в записи число х — действительное.

Задача 1. Запишите число

в тригонометрической форме.

Как видим, для освоения темы «Комплексные числа» надо отлично знать тригонометрию.

Действия над комплексными числами

Два комплексных числа равны друг другу, если равны соответственно их действительные и мнимые части.

Сравнивать комплексные числа нельзя. Операции «больше» и «меньше» для комплексных чисел не определены.

Два комплексных числа, отличающиеся только знаком мнимой части, называются комплексно-сопряженными. Вот такие:

Возьмем два комплексных числа:

Определим для них операции сложения и вычитания.

Сложение:

Так же, как и для действительных чисел, то есть от перемены мест слагаемых сумма не меняется (коммутативность сложения). Также выполняется ассоциативность сложения, то есть

Еще одно важное свойство:

Это знакомое нам неравенство треугольника.

Вычитание:

— расстояние между точками и

Задача 2. Определите, какая фигура на комплексной плоскости является решением уравнения

Прочитаем это уравнение так же, как мы делали с обычными уравнениями с модулем. Расстояние от точки z до точки 2i равно 1. Это значит, что точки, соответствующие решениям данного уравнения, лежат на окружности с центром в точке радиусом 1.

Если сложение и вычитание комплексных чисел вопросов не вызывают, то для умножения правила не такие очевидные. Вот какой будет формула произведения комплексных чисел:

Например, подставив в эту формулу получим уже знакомое равенство:

Умножение комплексных чисел обладает теми же свойствами, что и умножение действительных:

Но если умножение комплексных чисел настолько сложно — что же делать с возведением в степень? Оказывается, что и умножение, и возведение комплексных чисел в степень удобнее выполнять, записывая числа в тригонометрической форме.

Возведение в степень:

Последнее равенство называется формула Муавра.

Деление комплексных чисел определяем как действие, обратное умножению.

Сложные формулы, не правда ли? Попробуем применить.

Намного удобнее выполнять деление комплексных чисел, записав их в тригонометрической форме:

Извлечение корней из комплексных чисел — еще интереснее. Во-первых, для извлечения корня n-ной степени из комплексного числа лучше всего записать его в тригонометрической форме.

Во-вторых, для любого выражение принимает ровно различных значений.

Пусть — корень -ной степени из комплексного числа ;

Тогда Записав число z в тригонометрической форме, получим:

Обратите внимание — для корня n-ной степени получим различных значений корня.

Задача ЕГЭ-2022, Комплексные числа

Решим задачу из варианта ЕГЭ — 2022 по теме «Комплексные числа».

Про комплексное число известно, что

Найдите наименьшее значение

1 способ.

Расстояния от точки, соответствующей числу z, до точек и должны быть равны. Отметим точки и на комплексной плоскости. Равноудаленными от точек и будут все точки, лежащие на серединном перпендикуляре к отрезку, соединяющему и По условию задачи, из этих точек надо выбрать такую, для которой принимает наименьшее значение, то есть наименее удаленную от начала координат. Другими словами — найдем расстояние от начала координат до данной прямой.

Это показано на рисунке. Точка Н соответствует комплексному числу z, лежащему на прямой, все точки которой равноудалены от и при этом расстояние от 0 до z — наименьшее. Найдем это расстояние (равное ОН) из прямоугольного треугольника АОВ. Его катеты равны 3 и 4, гипотенуза равна 5. Записав площадь треугольника АОВ двумя способами, получим:

2 способ.

Вернемся к выражению

Запишем его в виде:

Мы получили, что модули двух комплексных чисел равны. Модуль комплексного числа равен Возведя это выражение в квадрат, получим, что Значит, если равны модули двух комплексных чисел и то

Выразим отсюда х;

и найдем наименьшее значение выражения

Мы получили функцию t(y). Обычную функцию от действительной переменной. Найдем наименьшее значение функции Это квадратичная функция, ее график — парабола с ветвями вверх, и наименьшее значение достигается в вершине параболы.

Еще несколько задач по теме «Комплексные числа»:

Представьте в тригонометрической форме числа:


источники:

http://mathprofi.net/vyrazhenija_uravnenija_i_sistemy_s_%20kompleksnymi_chislami.html

http://ege-study.ru/ru/ege/podgotovka/matematika/kompleksnye-chisla-na-ege-2022-po-matematike/