Эксцентриситет гиперболы заданной уравнением вычисляется по формуле

Гипербола: формулы, примеры решения задач

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b – длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы – бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет – это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат – каноническое уравнение гиперболы:

Если – произвольная точка левой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

Если – произвольная точка правой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже – прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где – расстояние от левого фокуса до точки любой ветви гиперболы, – расстояние от правого фокуса до точки любой ветви гиперболы и и – расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке “Эллипс” это пример 7.

Характерной особенностью гиперболы является наличие асимптот – прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты – прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами – прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы – это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

Основные элементы гиперболы

Дата добавления: 2015-08-31 ; просмотров: 5202 ; Нарушение авторских прав

4.7.1 Эксцентриситет гиперболы

Эксцентриситетомгиперболы называется отношение полуфокального расстояния к действительной полуоси и обозначается .

Если (F1,F2) ОХ, то (4.6)

если (F1,F2) ОУ, то (4.6.1)

4.7.2 Фокальные радиусы

Фокальными радиусами точки М гиперболы называются отрезки прямых, соединяющих эту точку с фокусами и .

Т.к. гипербола имеет две ветви, то разделяют фокальные радиусы точек правой и фокальные радиусы точек левой ветвей (рис. 31, 32).

Фокальные радиусы точки М правой ветви гиперболы (рис.31) вычисляются по формулам

(4.7)

Фокальные радиусы точки М левой ветви гиперболы (рис.32) вычисляются по формулам

(4.7.1)

4.7.3 Директрисы гиперболы

Директрисамигиперболы называются прямые параллельные мнимой оси и отстоящие от неё на расстояние , если (F1,F2) ОХ и , если (F1,F2) ОУ.

(рис.33) (4.8)

или (рис. 34) (4.8.1)

Директрисы обозначаются (рис.33,34)

Рис.34

4.7.4 Касательная к гиперболе

Касательной к гиперболе в точке М0 называется предельное положение секущей М0М при М М0 по гиперболе.

Уравнения касательных к гиперболе в точке( ):

, если (F1,F2) ОХ (4.9)

, если (F1,F2) ОУ (4.9.1).

4.7.5 Диаметры гиперболы

Прямая проходящая через середины параллельных хорд гиперболы, называется ее диаметром.

Все диаметры гиперболы проходят через ее центр (рис.35, 36 )

Рис.35

4.8Решение задач на определение основных элементов гиперболы

Задача 29Найти полуоси, координаты фокусов и эксцентриситет гиперболы, заданной уравнением . Вычислить длины фокальных радиусов точки .

1 Запишем каноническое уравнение гиперболы, разделив обе части на 20, получим

2 Найдем полуоси гиперболы

.

3 Найдем координаты фокусов гиперболы

.

Тогда .

  • Найдем эксцентриситет гиперболы

Фокусы эллипса лежат на оси ОХ, тогда воспользуемся формулой (9)

  • Вычислим длины фокальных радиусов

Т.к. точка М лежит на левой ветви гиперболы, то при вычислении и

необходимо воспользоваться формулами (10.1)

Задача 30Записать уравнения асимптот и директрис гиперболы

1 Запишем каноническое уравнение гиперболы, разделив обе части на 36, получим

2 Найдем полуоси гиперболы

.

3 Составим уравнения асимптот по формулам (7)

.

4 Составим уравнения директрис

По формуле (9) найдем эксцентриситет гиперболы

По формуле (11) составим уравнения директрис

Ответ: уравнения асимптот : ,

Гипербола и её свойства

Гипербола и её форма.

Гиперболой мы назвали линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
\frac>>-\frac>>=1.\label
$$

Из этого уравнения видно, что для всех точек гиперболы \(|x| \geq a\), то есть все точки гиперболы лежат вне вертикальной полосы ширины \(2a\) (рис. 8.6). Ось абсцисс канонической системы координат пересекает гиперболу в точках с координатами \((a, 0)\) и \((-a, 0)\), называемых вершинами гиперболы. Ось ординат не пересекает гиперболу. Таким образом, гипербола состоит из двух не связанных между собой частей. Они называются ее ветвями. Числа \(a\) и \(b\) называются соответственно вещественной и мнимой полуосями гиперболы.

Рис. 8.6. Гипербола.

Для гиперболы оси канонической системы координат являются осями симметрии, а начало канонической системы — центром симметрии.

Доказательство аналогично доказательству соответствующего утверждения для эллипса.

Для исследования формы гиперболы найдем ее пересечение с произвольной прямой, проходящей через начало координат. Уравнение прямой возьмем в виде \(y=kx\), поскольку мы уже знаем, что прямая \(x=0\) не пересекает гиперболу. Абсциссы точек перечения находятся из уравнения
$$
\frac>>-\fracx^<2>>>=1.
$$
Поэтому, если \(b^<2>-a^<2>k^ <2>> 0\), то
$$
x=\pm \frac<\sqrt-a^<2>k^<2>>>.
$$
Это позволяет указать координаты точек пересечения \((ab/v, abk/v)\) и \((-ab/v, -abk/v)\), где обозначено \(v=(b^<2>-a^<2>k^<2>)^<1/2>\). В силу симметрии достаточно проследить за движением первой из точек при изменении \(k\) (рис. 8.7).

Рис. 8.7. Пересечение прямой и гиперболы.

Числитель дроби \(ab/v\) постоянен, а знаменатель принимает наибольшее значение при \(k=0\). Следовательно, наименьшую абсциссу имеет вершина \((a, 0)\). С ростом \(k\) знаменатель убывает, и \(x\) растет, стремясь к бесконечности, когда \(k\) приближается к числу \(b/a\). Прямая \(y=bx/a\) с угловым коэффициентом \(b/a\) не пересекает гиперболу, и прямые с большими угловыми коэффициентами ее тем более не пересекают. Любая прямая с меньшим положительным угловым коэффициентом пересекает гиперболу.

Если мы будем поворачивать прямую от горизонтального положения по часовой стрелке, то \(k\) будет убывать, \(k^<2>\) расти, и прямая будет пересекать гиперболу во все удаляющихся точках, пока не займет положения с угловым коэффициентом \(-b/a\).

К прямой \(y=-bx/a\) относится все, что было сказано о \(y=bx/a\): она не пересекает гиперболу и отделяет прямые, пересекающие ее, от не пересекающих. Из приведенных рассуждений вытекает, что гипербола имеет вид, изображенный на рис. 8.7.

Прямые с уравнениями \(y=bx/a\) и \(y=-bx/a\) в канонической системе координат называются асимптотами гиперболы.


источники:

http://life-prog.ru/2_95511_osnovnie-elementi-giperboli.html

http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/hyperbola/