Элементами множества х являются уравнения

Решение некоторых задач по теории множеств

Разделы: Математика

На математическом кружке вместе с учащимися рассматривался ряд задач, благодаря наглядности которых, процесс решения становится понятным и интересным. На первый взгляд им хочется составить систему уравнений, но в процессе решения остается много неизвестных, что ставит их в тупик. Для того, чтобы уметь решать эти задачи, необходимо предварительно рассмотреть некоторые теоретические разделы теории множеств.

Введем определение множества, а так же некоторые обозначения.

Под множеством мы будем понимать такой набор, группу, коллекцию элементов, обладающих каким-либо общим для них всех свойством или признаком.

Множества обозначим А, В, С…, а элементы множеств а, b, с…, используя латинский алфавит.

Можно сделать такую запись определения множества:

, где

” – принадлежит;
“=>“ – следовательно;
“ø” – пустое множество, т.е. не содержащее ни одного элемента.

Два множества будем называть равными, если они состоят из одних и тех же элементов

Если любой элемент из множества А принадлежит и множеству В, то говорят, что множество А включено в множество В, или множество А является подмножеством множества В, или А является частью В, т.е. если , то , где “С” знак подмножества или включения.

Графически это выглядит так (рис.1):

Можно дать другое определение равных множеств. Два множества называются равными, если они являются взаимными подмножествами.

Рассмотрим операции над множествами и их графическую иллюстрацию (рис.2).

Объединением множеств А и В называется множество С, образованное всеми элементами, которые принадлежат хотя бы одному из множеств А или В. Слова “или ” ключевое в понимании элементов входящих в объединение множеств.

Это определение можно записать с помощью обозначений:

А υ В, где

где “ υ ” – знак объединения,

“ / ” – заменяет слова ”таких что“

Пресечение двух множеств А и В называется множество С, образованное всеми элементами, которые принадлежат и множеству А, и множеству В. Здесь уже ключевое слово “и”. Запишем коротко:

А ∩ В = С, где

“∩“ – знак пересечения. (рис.3)

Обозначим буквой Е основное или универсальное множество, где A С Е (“”- любо число), т.е. А Е = Е; АЕ =А

Множество всех элементов универсального множества Е, не принадлежащих множеству А называется дополнением множества А до Е и обозначается Ā Е или Ā (рис.4)

Е

Примерами для понимания этих понятий являются свойства:

А Ā=Е Ø = Е Е Ā=Ā

Свойства дополнения имеют свойства двойственности:

АВ = А∩В

АВ = АUВ

Введем еще одно понятие – это мощность множества.

Для конечного множества А через m (A) обозначим число элементов в множестве А.

Из определение следуют свойства:

Для любых конечных множеств справедливы так же утверждения:

m (AB) =m (A) + m (В) – m (А∩В)

m (A∩B) = m (A) + m (В) – m (АВ)

m (ABC) = m (A) + m (В) + m (С)– m (А∩В) — m (А∩С) – m (В∩С) – m (А∩В∩С).

А теперь рассмотрим ряд задач, которые удобно решать, используя графическую иллюстрацию.

Задача №1

В олимпиаде по математике для абитуриентов приняло участие 40 учащихся, им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. По алгебре решили задачу 20 человек, по геометрии – 18 человек, по тригонометрии – 18 человек.

По алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека.

  1. Сколько учащихся решили все задачи?
  2. Сколько учащихся решили только две задачи?
  3. Сколько учащихся решили только одну задачу?

Задача № 2

Первую или вторую контрольные работы по математике успешно написали 33 студента, первую или третью – 31 студент, вторую или третью – 32 студента. Не менее двух контрольных работ выполнили 20 студентов.

Сколько студентов успешно решили только одну контрольную работу?

Задача № 3

В классе 35 учеников. Каждый из них пользуется хотя бы одним из видов городского транспорта: метро, автобусом и троллейбусом. Всеми тремя видами транспорта пользуются 6 учеников, метро и автобусом – 15 учеников, метро и троллейбусом – 13 учеников, троллейбусом и автобусом – 9 учеников.

Сколько учеников пользуются только одним видом транспорта?

Решение задачи № 1

Запишем коротко условие и покажем решение:

  • m (Е) = 40
  • m (А) = 20
  • m (В) = 18
  • m (С) = 18
  • m (А∩В) = 7
  • m (А∩С) = 8
  • m (В∩С) = 9

m (АВС) = 3 => m (АВС) = 40 – 3 = 37

Обозначим разбиение универсального множества Е множествами А, В, С (рис.5).

К 1 – множество учеников, решивших только одну задачу по алгебре;

К 2 – множество учеников, решивших только две задачи по алгебре и геометрии;

К 3 – множество учеников, решивших только задачу по геометрии;

К 4 – множество учеников, решивших только две задачи по алгебре и тригонометрии;

К 5 – множество всех учеников, решивших все три задачи;

К 6 – множество всех учеников, решивших только две задачи, по геометрии и тригонометрии;

К 7 – множество всех учеников, решивших только задачу по тригонометрии;

К 8 – множество всех учеников, не решивших ни одной задачи.

Используя свойство мощности множеств и рисунок можно выполнить вычисления:

  • m (К 5 ) = m (А∩В∩С)= m (АВС) — m (А) — m (В) — m (С) + m (А∩В) + m (А∩С) + m (В∩С)
  • m (К 5 ) = 37-20-18-18+7+8+9=5
  • m (К 2 ) = m (А∩В) — m (К 5 ) = 7-5=2
  • m (К 4 ) = m (А∩С) — m (К 5 ) = 8-5=3
  • m (К 6 ) = m (В∩С) — m (К 5 ) = 9-5=4
  • m (К 1 ) = m (А) — m (К 2 ) — m (К 4 ) — m (К 5 ) = 20-2-3-5=10
  • m (К 3 ) = m (В) — m (К 2 ) — m (К 6 ) — m (К 5 ) = 18-2-4-5=7
  • m (К 7 ) = m (С) — m (К4) — m (К 6 ) — m (К 5 ) = 18-3-4-5 =6
  • m (К 2 ) + m (К 4 ) + m (К6) = 2+3+4=9 – число учеников решивших только две задачи;
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = 10+7+6=23 – число учеников решивших только одну задачу.

Ответ:

5 учеников решили три задачи;

9 учеников решили только по две задачи;

23 ученика решили только по одной задаче.

С помощью этого метода можно записать решения второй и третьей задачи так:

Решение задачи № 2

  • m (АВ) = 33
  • m (АС) = 31
  • m (ВС) = 32
  • m (К 2 ) + m (К 4 ) + m (К 6 ) + m (К 5 ) = 20

Найти m (К 1 ) + m (К 3 ) + m (К 7 )

  • m (АUВ) = m (К 1 ) + m (К 2 ) + m (К 3 ) + m (К 4 ) + m (К 5 ) + m (К 6 ) = m (К 1 ) + m (К 3 ) + 20 = 33 =>
  • m (К 1 ) + m (К 3 ) = 33 – 20 = 13
  • m (АUС) = m (К 1 ) + m (К 4 ) + m (К 2 ) + m (К 5 ) + m (К 6 ) + m (К 7 ) = m (К 1 ) + m (К 7 ) + 20 = 31 =>
  • m (К 1 ) + m (К 7 ) = 31 – 20 = 11
  • m (ВUС) = m (К 3 ) + m (К 2 ) + m (К 5 ) + m (К 6 ) + m (К 7 ) + m (К 4 ) = m (К 3 ) + m (К 7 ) + 20 = 32 =>
  • m (К 3 ) + m (К 7 ) = 32 – 20 = 12
  • 2m (К 1 ) + m (К 3 ) + m (К 7 ) = 13+11=24
  • 2m (К 1 ) + 12 = 24
  • m (К 3 )= 13-6=7
  • m (К 7 )=12-7=5
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = 6+7+5=18

Ответ:

Только одну контрольную работу решили 18 учеников.

Решение задачи № 3

  • m (Е) = 35
  • m (А∩В∩С)= m (К 5 ) = 6
  • m (А∩В)= 15
  • m (А∩С)= 13
  • m (В∩С)= 9

Найти m (К1) + m (К3) + m (К 7 )

  • m (К 2 ) = m (А∩В) — m (К 5 ) = 15-6=9
  • m (К 4 ) = m (А∩С) — m (К 5 ) = 13-6=7
  • m (К 6 ) = m (В∩С) — m (К 5 ) = 9-6=3
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = m (Е) — m (К 4 ) — m (К 2 ) — m (К 6 ) — m (К 5 ) = 35-7-9-3-6=10

Ответ:

Только одним видом транспорта пользуется 10 учеников.

Литература: А.Х. Шахмейстер «Множества. Функции. Последовательности»

Числовые множества и функции

2. Числовые множества и функции

2.1. Числовая ось. Множества на числовой прямой

Понятие множества принадлежит к числу первичных, не определяемых через более простые понятия.

Под множеством понимается совокупность (набор) некоторых объектов. Объекты, которые образуют множество называются элементами, или точками этого множества.

Примерами множеств являются: множество студентов данного вуза, множество предприятий некоторой отрасли, множество натуральных чисел и т. д. Т. е. объекты могут иметь самую различную природу, какую себе можно только представить.

Множества обозначаются прописными буквами, а их элементы – строчными.

Факт принадлежности элемента а множеству А условно принято обозначать записью . Если элемент b не является элементом множества А, то пишут

Множество, не содержащее ни одного элемента называется пустым и обозначается символом ø. Например, множество действительных корней уравнения х 2 + 1 = 0 есть пустое множество.

Если множество В состоит из части элементов множества А или совпадает с ним, то множество В называется подмножеством множества А, что эквивалентно символьной записи .

Два множества называются равными, если они состоят из одних и тех же элементов.

Объединением двух множеств А и В называется множество С, состоящее из всех элементов, принадлежащих хотя бы одному из данных множеств. Обозначается .

Пересечением двух множеств А и В называется множество D, состоящее из всех элементов, одновременно принадлежащих каждому из данных множеств А и В. Обозначается .

Разностью двух множеств А и В называется множество E, состоящее из всех элементов множества А, которые не принадлежат множеству В. Обозначается E = A\B.

Пример 2.1. Найти объединение, пересечение и разность множеств А = <1; 3; 6; 8>, В =

Ответ: , ,

Дополнением множества называется множество А0, состоящее из всех элементов множества В, не принадлежащих А.

Множества, элементами которых являются действительные числа, называются числовыми.

Из школьного курс алгебры известны множества : R – действительных чисел, Q – рациональных, I — иррациональных, Z – целых, N – натуральных чисел. Очевидно, что

Геометрически множество действительных чисел R изображается точками числовой прямой (числовой оси). Числовой прямой называют прямую, на которой выбрано начало отсчета, положительное направление и единица масштаба.

Между множеством действительных чисел и точками числовой прямой существует взаимно однозначное соответствие, т. е. каждому действительному числу соответствует определенная точка числовой прямой, и наоборот, каждой точке числовой оси – определенное действительное число. Поэтому часто вместо «число х» говорят «точка х».

Приведем определения некоторых множеств на числовой оси. Пусть а и b — действительные числа, а а.

Поэтому, например, решениями неравенства│ха│ 0). будут точки открытого интервала (а – ε, а + ε), т. е. точки интервала, удовлетворяющего неравенству а – ε 0), называется ε – окрестностью точки а (рис. 2.1).

2.3. Понятие функции одной переменной

Определение функции. Рассмотрим два множества Х и Y, элементами которых могут быть любые объекты. Предложим, что каждому элементу х множества Х по некоторому закону или способу поставлен в соответствие определенный элемент у множества Y, то говорят, что на множестве Х задана функция у = ƒ(х), (или отображение множества Х во множество Y).

Множество Х называется областью определения функции ƒ, а элементы у = ƒ(х) образуют множество значений функции – Y.

х – независимая переменная (аргумент).

у – зависимая переменная,

ƒ – закон соответствия, знак функции.

Буквы для обозначения зависимой и независимой переменной можно выбирать любые, например

это одна и та же функция, один и тот же закон сопоставления.

Пусть Х и Y множества вещественных чисел.

Значения х и у могут быть любой физической природы. На данном этапе мы будем рассматривать только функции, область определения и область значений которых являются числовыми множествами.

Область определения функции будем иногда обозначать символом D, а область значений – символом E

1) Найти область определения функции у = 1/(х2 – 5х + 6).

Решение: Найдем значения х, в которых знаменатель обращается в нуль.

х2 – 5х + 6=0. х1 = 2, х2=3. Функция не существует в этих точках. Областью определения является объединение таких множеств: D = (-∞, 2) U (2, 3) U (3, ∞).

2) Найти область определения функции у= log3(х – 1).

Решение: х – 1 >0, х > 1. Запишем решение в виде интервала: D = (1, ∞).

Функции находят широкое применение в экономической теории и практике. Спектр используемых в экономике функций весьма широк: от простейших линейных до функций, получаемых по определенному алгоритму с помощью так называемых рекуррентных соотношений, связывающих состояния изучаемых объектов в разные периоды времени.

Наиболее часто используются в экономике следующие функции:

1. Функция полезности (функция предпочтений) — в широком смысле зависимость полезности, т. е. результата, эффекта некоторого действия от уровня (интенсивности) этого действия.

2. Производственная функция — зависимость результата производственной деятельности от обусловивших его факторов.

3. Функция выпуска (частный вид производственной функции) — зависимость объема производства от наличия или потребления ресурсов.

4. Функция издержек (частный вид производственной функции) — зависимость издержек производства от объема продукции.

5. Функции спроса, потребления и предложения — зависимость объема спроса, потребления или предложения на отдельные товары или услуги от различных факторов (например, цены, дохода и т. п.).

Пусть рассматривается какое-либо утверждение В в связи с некоторым утверждением А. Если из В следует А, т. е. ВА, то А является необходимым условием для В. Если же из А следует В, т. е. АВ, то А называется достаточным условием для В. Например, делимость числа на 2 является необходимым условием для В (делимость на 6 делимость на 2), а, скажем, делимость числа на 12 является достаточным условием делимости на 6 (делимость на 12 делимость на 6).

Таким образом, необходимые условия − те, без которых рассматриваемое утверждение заведомо не может быть верным, а достаточные условия − те, при выполнении которых это утверждение заведомо верно.

2.3. Способы задания функции

1). Табличный — наиболее простой способ задания функции; составля­ется таблица: два столбца (или две строки), в левом записываются значения аргумента, в правом — соответствующие значения функции. Например, следующая таблица (табл.2.1) означает, что

Этот способ не всегда приемлем. Например, для функции

невозможно записать в таблицу все значения, которые принимает х. Но он очень важен, например, для задания функций, полученных из эксперимента.

Пример: В киоске продается мороженое. Зависимость количества проданных за день порций от цены мороженого (при прочих равных условиях) отражена в табл. 2.2:

В левом столбце — цена в рублях (обозначена буквой р), в правом столбце — количество проданных порций q = f(p), т. е. зада­на функция, выражающая зависимость спроса от цены. Такие функции (они называются функции спроса от цены) имеют большое значение в экономике, и мы к ним еще будем возвращаться.

2). Графический – наиболее наглядный способ задания функции.

называется множество всех точек плоскости с координатами (х, f(x)). Для предыдущего примера график функции имеет вид (рис. 2.2)

Для большей наглядности полученные точки графика соединены отрезка­ми прямых.

Отметим, что следующая кривая (рис. 2.3) не является графиком функ­ции, так как в промежутке от a до b нарушается требование однознач­ности из определения функции, каждому значению х из этого промежут­ка отвечают несколько значений у.

3). Аналитический способ задания функции — это задание функции формулой, с помощью которой по данным значениям аргумента определя­ются соответствующие значения функции; например,

Наряду с таким (как в этих примерах) явным заданием функции функциональная зависимость между переменными может быть задана уравнением

связывающим переменные х и у. Здесь зависимая переменная явно не выражена через независимую, например х3- у3+ 4 = 0. Такого типа функциональная зависимость между переменными х и у называется неявной. Более строго говоря, уравнение F(х, у) = 0 определяет у как неявную функцию от х, если каждому значению х из некоторого множества X можно однозначно сопоставить значение у так, что полу­ченная пара значений (х, у) обращает уравнение

F(x, у) = 0 в тож­дество. В одних случаях от неявного задания функции несложно перейти к явному. Например, если

х3- у3+ 4 = 0 — неявное задание функции, то у = (х3 + 4)1/3 есть явное задание этой же функции. В других случаях такой переход может быть затруднен или вообще невоз­можен. Не всякое уравнение F(x, у) = 0 определяет функцию, в част­ности из-за требования однозначности функции. Оно может определять сразу несколько функций. Например, известному из курса средней школы уравнению окружности х2 + у2 = a2 соответствуют две функции:

у = (а2 — х2)1/2 и у = -(а2 — х2)1/2 . Графиком первой из них является верхняя полуокружность, а графиком второй — нижняя (рис. 2.4).

4). Параметрический способ задания функции. Функциональную зависимость между переменными х и у можно задать с помощью третьей вспомогательной переменной, называемой параметром, а именно — каждая переменная задается как функция этого вспомогательного параметра:

Так быва­ет, например, при задании движения объекта на плоскости, когда каж­дая координата х, у задается как функция времени:

Тогда обе функции в совокупности определяют траекторию движения этого объекта.

Пример. Функция у = (1 — х2)1/2 может быть задана параметри­чески:

5) Способ, когда функция определяется несколькими формулами, действующими на различных участках, например:

График этой функции

Еще один пример.

График этой функции

Функция обозначается у = sign x.

Существуют функции; которые ни одним из предыдущих, способов задать нельзя. Их задают словесным описанием закона, по которому значениям одной переменной сопоставляют значения другой переменной.

Эта функция называется функцией Дирихле. Ни графически, ни аналити­чески, ни таблично ее описать нельзя.

Иногда подобным образом задают функцию, которую нельзя задать аналитически, а затем строят ее график.

Пример: у(х) есть наибольшее целое число, меньшее или равное х. Обозначают: у = Е(х).Например, Е (6,2) = 6. График этой функции

Замечание. До сих пор мы говорили в основном о функции непре­рывного аргумента, т. е. о функции, аргумент которой является не­прерывной величиной. Точно так же можно говорить о функции дискрет­ного аргумента; например, если n — натуральное число, то

есть функция натурального аргумента. Ее график имеет вид:

2.4. Обратная функция

Если Y – множество значений функции f (x) и для любого элемента существует единственный элемент такой, что f (x) = y, то говорят, что функция осуществляет взаимнооднозначное соответствие между множествами X и Y. Другими словами, соответствие называется взаимнооднозначным, если каждому элементу соответствует единственный элемент и наоборот, каждому элементу соответствует единственный элемент Функция, осуществляющая взаимнооднозначное соответствие, называется обратимой; ещё говорят, что у функции f существует обратная функция. Такая функция обозначается и каждому элементу ставит в соответствие такой элемент что f (x) = y; этот факт записывают так: Однако нам непривычна запись функции как зависимости x от y. Поэтому сделаем формальную замену переменных что соответствует отражению относительно биссектрисы первого и третьего координатных углов. Тогда получим, что − обратная функция, график которой получается из графика исходной функции y = f (x) отражением относительно биссектрисы первого и третьего координатных углов. Область определения обратной функции совпадает с областью значений самой функции: Область значений обратной функции совпадает с множеством определения самой функции: (Взято из «Избранное»/ дискретная математика/ 4.1.2. Сравнение и отображение множеств. url.

http://www. *****/mathematics/courses/algebra/content/chapter2/section4/paragraph2/theory. html)

Пусть имеется функция у = f(x) с областью определения Х и об­ластью изменения Y. По определению функции каждому значению х из X ставится в соответствие значение у из Y. Будем рассматривать такие функции, что двум разным значениям аргумента x1 и х2 соответствуют разные значения функции, т. е. при x1 ≠ х2 справедливо f(x1) ≠ f(х2).

Тогда для каждого значения у из Y найдется такое единственное значение х из X, что f(x) = у.

Правило, сопоставляющее каждому у из Y указанное значение х, определяет функциональную зависимость

φ(у) = х. Эта функция назы­вается обратной к функции

у = f(x). Она обозначается х = f-1(y).

Областью определения обратной функции является множество значений данной функции f(x). График функции

у = f(x) является и графиком обратной функции х = f-1(y), при этом независимая и зависимая пе­ременные меняются ролями. Напомним, что функция не зависит от обозначения переменных: у = х2, u= у2, х = у2 — одна и та же функция. Также у = f-1(х) и х = f-1(y) — одна функция, обратная функции у = f(x). Так как точки (a, b) и (b, а) симметричны относи­тельно биссектрисы I — III координатных углов, то график обратной функции у = f-1(х) симметричен относительно этой биссектрисы графи­ку функции у = f(x).

1. Для функции у = ах обратной является функция

х = loga y или у = loga х. См. рис. 2.9.

2. Для функции у = х3 обратной является функция

Использование обратной функции позволяет перейти от параметри­ческого задания функции к явному:

пусть функция задана параметрически:

причем функция х = φ(t) имеет обратную t =φ-1(х). Подставляя в функцию у = ψ(t) выражение t =φ-1(х), получаем у = ψ(φ-1(x)) — явное задание функции.

2.5. Сложная функция

Пусть функция у = f(u) есть функция от переменной u, определенная на множестве U с областью значений – Y, а переменная u = φ(х) функция от переменной х, определенной на множестве Х с областью значения U. Тогда заданная на множестве Х функция у = f(φ(x)) называется сложной функцией (функцией от функций). Например, у = lg sin 3х. Эту сложную функцию от х можно расписать, как цепочку простых функций: у= lg u, u = sin t, t = 3x.

2.6. Ограниченная функция

Функция называется ограниченной сверху, если найдется такое число М, что для всех х справедливо неравенство Аналогично определяется функция, ограничен­ная снизу. Например, функция ограничена снизу, для всех х. Здесь М = 0.

Функция называется ограниченной, если она ограничена и сверху, и снизу. Например, функция

2.7. Основные элементарные функции

К основным элементарным функциям относятся:

I. Степенная функция y = kxa, где а — действительное число; в частности:

если а = 1, k=1 то y = х — линейная функция (рис. 2.11);

если а = 1/2, k=1, то у = х1/2 (рис. 2.12).

Рис. 2.11. Рис. 2.12.

если а = -1, то у = kх-1 = k/х — гипербола; при этом:

− если k >0, то гипероола располо­жена в 1-й и 3-й четвертях (рис 2.13);

Рис. 2.17. Рис. 2.18.

4. Тригонометрические и обратные тригонометрические функции.

(графики не приводятся)

2.6. Примеры функции из экономики

1. Функция спроса от цены Q = f(p) определяет зависимость величины Q спроса на товар от цены р этого товара (при прочих равных условиях). Рассмотрим примеры функций спроса от цены.

1). Так как р и Q должны быть неот­рицательны, то график этой функции есть находящаяся в 1-й чет­верти часть гиперболы (смещенной по оси на -2).

2). При р = 0 спрос равен 10 ед. С увеличением цены спрос падает и, начиная с р = 20, становится равным нулю. Поэтому правильнее было бы записать эту функцию спроса так:

Однако принято писать так, как указано в условии примера.

Как правило, функция спроса есть убывающая функция, то есть с возрастанием цены спрос на данный товар падает (в экономике такое явление называется законом спроса). Вместе с тем бывают случаи, когда этот закон не действует, и в последующем студенты смогут по­знакомиться с такими «неправильными» товарами.

Отметим, что функция спроса (от цены) часто обозначается Q = D(p), где D от английского Demand — спрос.

2. Функция предложения (от цены) показывает количество Q това­ра, которое производитель готов предложить рынку при данной цене р.

Пример. Q = 0,75р — 3 — функция предложения.

Пока цена меньше 4, производителю невыгодно поставлять данный товар, предложение равно нулю. Опять же можно отметить, что более аккуратной с математической точки зрения была бы такая запись:

Известны и другие функции, применяемые для описания экономических законов.

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Некоторые сведения из теории множеств

Информатика. 10 класса. Босова Л.Л. Оглавление

§ 17. Некоторые сведения из теории множеств

17.1. Понятие множества

С понятием множества вы познакомились на уроках математики ещё в начальной школе, а затем работали с ним при изучении математики и информатики в основной школе.

Множество — это совокупность объектов произвольной природы, которая рассматривается как единое целое.

Примерами множеств могут служить: множество всех учеников вашего класса, множество всех жителей Санкт-Петербурга, множество всех натуральных чисел, множество всех решений некоторого уравнения и т. п.

Множества принято обозначать прописными буквами латинского алфавита (А, В, С, …). Объекты, входящие в состав множества, называются его элементами.

Множество можно задать следующими способами:

1) перечислением всех его элементов;
2) характеристическим свойством его элементов.

В первом случае внутри фигурных скобок перечисляются все объекты, составляющие множество. Каждый объект, входящий в множество, указывается в фигурных скобках лишь один раз.

Например, запись М = <1, 3, 5, 7, 9>означает, что множество М состоит из чисел 1, 3, 5, 7 и 9. Точно такой же смысл будет иметь запись М = <3, 1, 5, 9, 7>. Иначе говоря, порядок расположения элементов в фигурных скобках значения не имеет. Важно точно указать, какие именно объекты являются элементами множества.

Например:

• число 5 является элементом множества М: 5 ? М 1) ;
• число 4 не является элементом множества М: 4 ? М.

1) Символ ? называется знаком принадлежности.

Это же множество можно задать с помощью характеристического свойства образующих его элементов — такого свойства, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, который ему не принадлежит. В нашем примере можно говорить о множестве натуральных однозначных нечётных чисел.

В рассматриваемом множестве М содержится 5 элементов. Это обозначают так: |М| = 5. Можно составить множество, содержащее любое число элементов. Например, множество всех корней уравнения х 2 — 4х — 5 = 0 конечно (два элемента), а множество всех точек прямой бесконечно. Множество, не содержащее ни одного элемента, называется пустым и обозначается символом ?.

Первый способ задания множеств применим только для конечных множеств, да и то при условии, что число элементов множества невелико. Вторым способом можно задавать как конечные, так и бесконечные множества.

Из некоторых элементов множества М можно составить новое множество, например Р: Р = <1, 3, 5>.

Если каждый элемент множества Р принадлежит множеству М, то говорят, что Р есть подмножество М, и записывают: Р ? М.

Само множество М является своим подмножеством, т. к. каждый элемент М принадлежит множеству М. Пустое множество также является подмножеством М.

Работая с объектами какой-то определённой природы, всегда можно выделить «самое большое» или универсальное множество, содержащее все возможные подмножества. Пусть А — множество чётных чисел, В — множество натуральных чисел, С — множество чисел, кратных пяти.

Тогда самым большим множеством, содержащим в себе множества А, В и С, а также другие подобные множества, будет множество целых чисел. Универсальное множество будем обозначать буквой U.

Для наглядного изображения множеств используются круги Эйлера (рис. 4.1). Точки внутри круга считаются элементами множества.

Рис. 4.1. Графическое изображение множеств: 1) х ? М, 2) х ? М

17.2. Операции над множествами

Над множествами, как и над числами, производят некоторые операции.

Пересечением двух множеств X и Y называется множество их общих элементов.

Пересечение множеств обозначают с помощью знака ?: Х ? У. На рисунке 4.2 закрашено множество X ? Y.

Рис. 4.2. Графическое изображение множества X ? Y

Пусть множества X и Y состоят из букв:

Эти множества имеют общие элементы: к, о.

Множества М и X не имеют общих элементов, их пересечение — пустое множество:

Пересечение множеств М и Р есть множество Р, а пересечение множеств М и М есть множество М:

Объединением двух множеств X и Y называется множество, состоящее из всех элементов этих множеств и не содержащее никаких других элементов.

Объединение множеств обозначают с помощью знака ?: X ? У.

На рисунке 4.3 закрашено множество X ? У.

Рис. 4.3. Графическое изображение множества X ? У

Для наших примеров:

М ? Р = М; М ? М = М.

Подумайте, возможно ли равенство: А ? В = А ? В.

Пересечение и объединение выполняются для любой пары множеств. Третья операция — дополнение — имеет смысл не для всех множеств, а только тогда, когда второе множество является подмножеством первого.

Пусть множество Р является подмножеством множества М. Дополнением Р до М называется множество, состоящее из тех элементов М, которые не вошли в Р.

Дополнение Р до М обозначают

Дополнение М до М есть пустое множество, дополнение пустого множества до М есть

Особый интерес представляет дополнение некоторого множества В до универсального множества U. Например, если В — это множество точек, принадлежащих некоторому отрезку, то его дополнением

до универсального множества U, которым в данном случае является множество всех точек числовой прямой, является множество точек, не принадлежащих данному отрезку.

В общем случае можем записать:

Рис. 4.4. Дополнение множества В до универсального множества

На рисунке 4.5 видно, что множество А ? В будет совпадать с универсальным, если А будет совпадать с множеством

или содержать его в качестве подмножества. В первом случае, т. е. при А =

мы имеем дело с минимальным множеством А, таким что A ? В = U.

Рис. 4.5. Выбор такого множества А, что А ? В = U

Каким должно быть множество А для того, чтобы множество

? В совпадало с универсальным множеством?

Для ответа на этот вопрос воспользуйтесь рисунком 4.6.

Рис. 4.6. Выбор такого множества А, что ? В = U

17.3. Мощность множества

Мощностью конечного множества называется число его элементов.

Мощность множества X обозначается |Х|.

В рассмотренных выше примерах |Х| = 5, |М| = 5.

Число элементов объединения двух непересекающихся множеств равно сумме чисел элементов этих множеств. Так, в объединении множеств М и X содержится 10 элементов: |М ? Х| = 10.

Если же множества пересекаются, то число элементов объединения находится сложнее. Так, X состоит из 5 элементов, множество Y — из 4, а их объединение — из 7. Сложение чисел 5 и 4 даёт нам число 9. Но в эту сумму дважды вошло число элементов пересечения. Чтобы получить правильный результат, надо к числу элементов X прибавить число элементов Y и из суммы вычесть число элементов пересечения. Полученная формула подходит для любых двух множеств: |Х ? Y| = |Х| + |Y| — |Х ? Y|. Это частный случай так называемого принципа включений-исключений.

Принципом включений-исключений называется формула, позволяющая вычислить мощность объединения (пересечения) множеств, если известны их мощности и мощности всех их пересечений (объединений).

Для случая объединения трёх множеств формула имеет вид:

Аналогичные формулы справедливы и для пересечения множеств:

Пример. В зимний оздоровительный лагерь отправляется 100 старшеклассников. Почти все они увлекаются сноубордом, коньками или лыжами. При этом многие из них занимаются не одним, а двумя и даже тремя видами спорта. Организаторы выяснили, что всего кататься на сноуборде умеют 30 ребят, на лыжах — 28, на коньках — 42. Всего умением кататься на лыжах и сноуборде из них могут похвастаться 8 ребят, на лыжах и коньках — 10, на сноуборде и коньках — 5, но только трое из них владеют всеми тремя видами спорта.

Сколько ребят не умеет кататься ни на сноуборде, ни на лыжах, ни на коньках?

Обозначим через S, L и К множества сноуборд истов, лыжников и любителей коньков соответственно. Тогда |S| = 30, |L| = 28 и |К| = 42. При этом |S ? L| = 8, |К ? L| = 10, |S ? К| = 5, |S ? L ? K| = 3.

Объединение множеств S, L и К — это множество ребят, увлекающихся хотя бы каким-то видом спорта.

По формуле включений-исключений находим:

|S ? L ? К| = 30 + 28 + 42 — 8 — 10 — 5 + 3 = 80.

Таким образом, из 100 старшеклассников 20 не умеют кататься ни на сноуборде, ни на лыжах, ни на коньках.

САМОЕ ГЛАВНОЕ

Множество — это совокупность объектов произвольной природы, которая рассматривается как единое целое.

Пересечением двух множеств X и Y называется множество их общих элементов.

Объединением двух множеств X и Y называется множество, состоящее из всех элементов этих множеств и не содержащее никаких других элементов.

Пусть множество Р является подмножеством множества М. Дополнением Р до М называется множество, состоящее из тех элементов М, которые не вошли в Р.

Мощностью конечного множества называется число его элементов.

Формула включений-исключений позволяет вычислить мощность объединения (пересечения) множеств, если известны их мощности и мощности всех их пересечений (объединений).

Вопросы и задания

1. Если множество X — это множество натуральных чисел, делящихся нацело на 2, а У — множество натуральных чисел, делящихся нацело на 3, то что будет:

1) пересечением этих множеств;
2) объединением этих множеств?

2. Пусть множество X — это множество натуральных чисел, делящихся нацело на 18, a Y — множество натуральных чисел, делящихся нацело на 14. Укажите наименьшее число, входящее:

1) в пересечение этих множеств;
2) в объединение этих множеств?

3. Пусть А, В и С — некоторые множества, обозначенные кругами, U — универсальное множество.

С помощью операций объединения, пересечения и дополнения до универсального множества выразите через А, В и С следующие множества:

1) 1 ? 2 ? 3 ? 4 ? 5 ? 6;
2) 2 ? 5;
3) 5;
4) 2 ? 4 ? 5 ? 6;
5) 1 ? 2 ? 3;
6) 8.

4. В первую смену в лагере «Дубки» отдыхали: 30 отличников, 28 победителей олимпиад и 42 спортсмена. При этом 10 человек были и отличниками, и победителями олимпиад, 5 — отличниками и спортсменами, 8 — спортсменами и победителями олимпиад, 3 — и отличниками, и спортсменами, и победителями олимпиад. Сколько ребят отдыхало в лагере?

5. Старшеклассники заполняли анкету с вопросами об экзаменах по выбору. Оказалось, что выбрали они информатику, физику и обществознание. В классе 38 учеников. Обществознание выбрал 21 ученик, причём трое из них выбрали ещё и информатику, а шестеро — ещё и физику. Один ученик выбрал все три предмета. Всего информатику выбрали 13 учеников, пятеро из которых указали в анкете два предмета. Надо определить, сколько же учеников выбрали физику.

*6. Из 100 человек 85 знают английский язык, 80 — испанский, 75 — немецкий. Сколько человек знают все три языка?


источники:

http://pandia.ru/text/78/195/11799.php

http://murnik.ru/nekotorye-svedenija-iz-teorii-mnozhestv