Эллиптический тип уравнения математической физики

Численные методы решения уравнений эллиптического типа

Введение

Наиболее распространённым уравнением эллиптического типа является уравнение Пуассона.
К решению этого уравнения сводятся многие задачи математической физики, например задачи о стационарном распределении температуры в твердом теле, задачи диффузии, задачи о распределении электростатического поля в непроводящей среде при наличии электрических зарядов и многие другие.

Для решения эллиптических уравнений в случае нескольких измерений используют численные методы, позволяющие преобразовать дифференциальные уравнения или их системы в системы алгебраических уравнений. Точность решения опреде­ляется шагом координатной сетки, количеством итераций и разрядной сеткой компьютера [1]

Цель публикации получить решение уравнения Пуассона для граничных условий Дирихле и Неймана, исследовать сходимость релаксационного метода решения на примерах.

Уравнение Пуассона относится к уравнениям эллиптического типа и в одномерном случае имеет вид [1]:

(1)

где x – координата; u(x) – искомая функция; A(x), f(x) – некоторые непрерывные функции координаты.

Решим одномерное уравнение Пуассона для случая А = 1, которое при этом принимает вид:

(2)

Зададим на отрезке [xmin, xmax] равномерную координатную сетку с шагом ∆х:

(3)

Граничные условия первого рода (условия Дирихле) для рассматривае­мой задачи могут быть представлены в виде:

(4)

где х1, xn – координаты граничных точек области [xmin, xmax]; g1, g2 – некоторые
константы.

Граничные условия второго рода (условия Неймана) для рассматривае­мой задачи могут быть представлены в виде:

(5)

Проводя дискретизацию граничных условий Дирихле на равномерной координатной сетке (3) с использованием метода конечных разностей, по­лучим:

(6)

где u1, un – значения функции u(x) в точках x1, xn соответственно.

Проводя дискретизацию граничных условий Неймана на сетке (3), по­лучим:

(7)

Проводя дискретизацию уравнения (2) для внутренних точек сетки, по­лучим:

(8)

где ui, fi – значения функций u(x), f(x) в точке сетки с координатой xi.

Таким образом, в результате дискретизации получим систему линейных алгебраических уравнений размерностью n, содержащую n – 2 уравнения вида (8) для внутренних точек области и уравнения (6) и (7) для двух граничных точек [1].

Ниже приведен листинг на Python численного решения уравнения (2) с граничными условиями (4) – (5) на координатной сетке (3).

Разработанная мною на Python программа удобна для анализа граничных условий.Приведенный алгоритм решения на Python использует функцию Numpy — u=linalg.solve(a,b.T).T для решения системы алгебраических уравнений, что повышает быстродействие при квадратной матрице . Однако при росте числа измерений необходимо переходить к использованию трех диагональной матрицы решение для которой усложняется даже для очень простой задачи, вот нашёл на форуме такой пример:

Программа численного решения на равномерной по каждому направлению сетки задачи Дирихле для уравнения конвекции-диффузии

(9)

Используем аппроксимации центральными разностями для конвективного слагаемого и итерационный метод релаксации.для зависимость скорости сходимости от параметра релаксации при численном решении задачи с /(х) = 1 и 6(х) = 0,10. В сеточной задаче:

(10)

Представим матрицу А в виде суммы диагональной, нижней треугольной и верхней треугольных матриц:

(10)

Метод релаксации соответствует использованию итерационного метода:

(11)

При \ говорят о верхней релаксации, при — о нижней релаксации.

На графике показана зависимость числа итераций от параметра релаксации для уравнения Пуассона (b(х) = 0) и уравнения конвекции-диффузии (b(х) = 10). Для сеточного уравнения Пуассона оптимальное значении параметра релаксации находится аналитически, а итерационный метод сходиться при .

  1. Приведено решение эллиптической задачи на Python с гибкой системой установки граничных условий
  2. Показано что метод релаксации имеет оптимальный диапазон () параметра релаксации.

Ссылки:

  1. Рындин Е.А. Методы решения задач математической физики. – Таганрог:
    Изд-во ТРТУ, 2003. – 120 с.
  2. Вабищевич П.Н.Численные методы: Вычислительный практикум. — М.: Книжный дом
    «ЛИБРОКОМ», 2010. — 320 с.

ТЕМА: Уравнения эллиптического типа

ТИТУЛЬНЫЙ ЛИСТ

1 Теоретические обоснования уравнений эллиптического типа………………. 4

1.1. Задачи приводящие к уравнению Лапласа………………. 5

1.2. Уравнение Шредингера и его стационарный аналог. 9

1.3. Уравнение Гельмгольца……………………………………………. ……10

2 Примеры решения задач на уравнения эллиптического типа……………………12

Список использованных источников……………………………………………. …16

В курсовой работе будут рассмотрены уравнения эллиптического типа.

Актуальность исследования заключается в том, что благодаря данному типу уравнений можно описать стационарные процессы, проходящие в различных физических полях. Например, с помощью уравнения Пуассона можно описать электростатическое поле, поле давления [1].

Исследование затронет следующие проблемы: применение уравнений эллиптического типа на практике и способы их решения.

Целью исследования является: изучение вопроса, касающегося применения уравнений эллиптического типа на практике.

Основными задачами, поставленными для достижения цели можно считать:

— ознакомиться с положениями, характеризующими уравнения эллиптического типа;

— выявить основные уравнения, относящиеся к данному типу;

— освоить навык решения задач, используя данные уравнения;

— показать специфику проблем, которые могут возникнуть на этапах решения.

Объектом исследования заданной темы являются дифференциальные уравнения в частных производных.

Предметом исследования выступают уравнения эллиптического типа.

Теоретической и методологической основой исследования послужили труды отечественных и зарубежных деятелей, методические пособия по дисциплине «методы математической физики».

1. ТЕОРЕТИЧЕСКИЕ ОБОСНОВАНИЯ УРАВНЕНИЙ ЭЛЛИПТИЧЕСКОГО ТИПА

Помимо физических явлений, развивающихся в пространстве и во времени, существует множество процессов, которые не изменяются с течением времени. Эти процессы называются стационарными. При исследовании данных процессов, различной физической природы (колебания, теплопроводность, диффузия и др.) обычно приходят к уравнениям эллиптического типа. Примерами могут выступать:

1. Уравнения Лапласа и Пуассона, описывают различные стационарные физические поля.

2. Стационарный аналог уравнения Шредингера, когда предполагается гармоническая зависимость от времени.

3. Уравнение Гельмгольца.

4. Уравнения, получаемые из уравнения Максвелла, если предполагается, что электромагнитное поле не изменяется с течением времени [1].

Наиболее распространенным уравнением этого типа является уравнение Лапласа

.

Этим уравнением характеризуется гравитационный и электростатический потенциалы в точках свободного пространства, оно описывает потенциал скорости безвихревого потока несжимаемой жидкости, и оно же справедливо для температуры однородной изотропной среды при установившемся движении тепла.

Функция называется гармонической в области , если она непрерывна в этой области вместе со своими производными до 2-го порядка и удовлетворяют уравнению Лапласа.

При изучении свойств гармонических функций были разработанные различные математические методы, оказавшиеся плодотворными и в применении к уравнениями гиперболического и параболического типов [1].

1.1. ЗАДАЧИ ПРИВОДЯЩИЕ К УРАВНЕНИЮ ЛАПЛАСА

1. Стационарное тепловое поле. Постановка краевых задач.

Рассматривается стационарное тепловое поле. Температура нестационарного теплового может быть представлена дифференциальным уравнением теплопроводности

Если процесс стационарен, то устанавливается распределение температуры , не меняющееся с течением времени и, следовательно, удовлетворяющее уравнению Лапласа

(1)

При наличии источников тепла получается уравнение

(2)

где – плотность тепловых источников, а – коэффициент теплопроводности. Неоднородное уравнение Лапласа (2) часто называют уравнением Пуассона.

Рассматривается некоторый объем , ограниченный поверхностью . Задача о стационарном распределении температуры внутри тела формулируется следующим образом:

Найти функцию , удовлетворяющую внутри Т уравнению

,(3)

и граничному условию, которое может быть взято в одном из следующих видов:

I. на (первая краевая задача);

II. на (вторая краевая задача);

III. на (третья краевая задача).

где , , , — заданные функции, – производная по внешней нормали к поверхности

Первую краевую задачу называют для уравнений Лапласа часто называют задачей Дирехле, а вторую задачу – задачей Неймана.

Если ищется решение в области , внутренней (или внешней) по отношению к поверхности , то соответствующую задачу называют внутренней (или внешней) краевой задачей [3].

2. Потенциальное течение жидкости. Потенциал стационарного тока и электростатического поля.

В качестве второго примера будет рассмотрено потенциальное течение жидкости без источников. Пусть внутри некоторого объема с границей имеет место стационарное течение несжимаемой жидкости (плотность ), характеризуемое скоростью . Если течение жидкости не вихревое, то скорость является потенциальным вектором, т.е

(4)

где – скалярная функция, называемая потенциалом скорости. Если отсутствуют источники, то

.(5)

При подстановке сюда выражения (3) для υ, выходит:

,

,(6)

то есть потенциал скорости удовлетворяет уравнению Лапласа.

Пусть в однородной проводящей среде имеется стационарный ток с объемной плотностью . Если в среде нет объемных источников тока, то

.(7)

Электрическое поле определяется через плотность тока из дифференциального закона Ома

(8)

где – проводимость среды.

Поскольку процесс стационарный, то электрическое поле является безвихревым или потенциальным, т.е. существует такая скалярная функция для которой

).(9)

Отсюда на основании формул (6) и (7) заключается, что

,(10)

т.е. потенциал электрического поля стационарного тока удовлетворяет уравнению Лапласа.

Рассматривается электрическое поле стационарных зарядов. Из стационарности процесса следует, что

,(11)

т.е. поле является потенциальным и

.

Пусть – объемная плотность заряда, имеющихся в среде, характеризуемой диэлектрической постоянной .

Исходя из основного закона электродинамики

(12)

где – некоторый объем, – поверхность, его ограничивающая, где – сумма всех зарядов внутри , и пользуясь теоремой Отроградского

(13)

.

При подстановке сюда выражение (8) для , выходит:

,(14)

т.е. электростатический потенциал удовлетворяет уравнению Пуассона. Если объемных зарядов нет , то потенциал должен удовлетворять уравнению Лапласа

Нами был рассмотрен ряд процессов. Основные краевые задачи для которых относятся к трем типам, приведенным выше [1].

1.2. УРАВНЕНИЕ ШРЕДИНГЕРА И ЕГО СТАЦИОНАРНЫЙ АНАЛОГ

В квантовой механике состояние частицы описывается волновой функцией , квадрат модуля которой имеет смысл плотности вероятности найти частицу в окрестности данной точки в момент времени [2]. Волновая функция удовлетворяет уравнению Шредингера

где — постоянная Планка. Оператор Гамильтона для движения частицы в поле имеет вид

Уравнение Шредингера является уравнением в частных производных второго порядка по координатам, но первого порядка по времени. В отличие от волнового уравнения, чтобы выделить частное решение из общего, надо задавать при одно начальное условие, а не два.

Если искать решение в виде стационарных состояний , имеющих определенную энергию , то время можно исключить и получить стационарное уравнение Шредингера

(15)

Требуется найти не только решение , но и такие значения энергии , при которых эти решения удовлетворяют граничным условиям. Такая постановка называется спектральной задачей [3].

1.3 УРАВНЕНИЕ ГЕЛЬМГОЛЬЦА

Эллиптическое дифференциальное уравнение в частных производных, получаемое из уравнение Максвелла, если предполагается, что электромагнитное поле либо не меняется с течением времени, либо меняется по гармоническому закону. Может быть представлено как

где – это оператор Лапласа, а неизвестная функция определена в (на практике уравнение Гельмгольца применяется для ).

В уравнение Гельмгольца не входят операторы дифференцирования по времени, следовательно, сведение исходной задачи в частных производных к уравнению Гельмгольца может упростить её решение. Для примера рассматривается волновое уравнение:

(16)

Пусть функции и допускают разделение переменных: , и пусть . Нужно заметить, что в пространстве Фурье – преобразований дифференцирование по времени соответствует умножению на множитель . Таким образом, уравнение приводится к виду:

(17)

где = — это квадрат модуля волнового вектора.

Решение уравнения Гельмгольца зависит от вида граничных условий. В двумерном случае уравнение Гельмгольца применяется для решения задачи о колеблющейся мембране, тогда естественным образом задаются однородные граничные условия, что физически соответствует закреплению мембраны на границе. В таком случае решение будет зависеть от формы мембраны. Так, для круглой мембраны радиуса в полярных координатах уравнение принимает вид:

(18)

Метод разделения переменных позволяет перейти к задаче на собственные значения для части решения, зависящей только от :

(19)
(20)

а функция, зависящая только от радиуса, будет удовлетворять уравнению:

(21)

Фундаментальными решениями этих уравнений являются, соответственно, функции , где i-корень функции Бесселя λ-го порядка [4].

2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЯ ЭЛЛИПТИЧЕСКОГО ТИПА

В отличие от смешанных задач, для эллиптических уравнений ставится только краевая задача

где – внешняя нормаль к границе области .

При этом, если , задача называется задачей Дирихле, если , задачей Неймана, если то задача называется смешанной.

Задачи буду решаться в полярных или сферических координатах. Заданные краевые условия произвольные, неоднородные. Однородные краевые условия для нахождения собственных функций возникают из-за того, что области имеют специальный вид, а потому решение должно иметь период , а в случае прибавляются условия (уравнение Лапласа в новых координатах при этом имеет особенность). [5].

Предлагаю рассмотреть метод нахождения решения уравнения Лапласа в круге, то есть метод нахождения функции , удовлетворяющий уравнению Лапласа внутри круга радиусом c центром в полюсе полярной системы координат и граничному условию на окружности

где – заданная функция, непрерывная на окружности.

Задача № 1. Решить краевую задачу для уравнения в круге , если на границе круга φ.

Решение: Уравнение Лапласа в полярных координатах имеет вид

(22)

1. Частное решение уравнения в соответствии с методом Фурье ищется в виде

причем и периодическая с периодом

При подстановке в уравнение (22) и разделяя переменные, выходит

Поэтому функции и являются решениями связанных задач:

a)

b)

2. Решается задача

Общее решение уравнения имеет вид

(23)

где и – константы.

Это решение периодично при и имеет период при

Если

Если

3. Решается задача

Если Общее решение этого уравнения

Так как

Если ,

Общее решение этого уравнения

Так как

4. Вспомогательные решения имеют вид:

5. Тогда решение исходной задачи ищется в виде

6. При использовании граничного условия sin3φ,

получается sin3φ. Отсюда

В результате

Ответ:

Задача № 2. Решить краевую задачу

Решение: Проводятся преобразования, аналогичные предыдущей задачи до момента нахождения коэффициентов .

Нужно представить граничное условие в виде

Следовательно,

Далее предлагаю рассмотреть примеры решения краевых задач уравнения Гельмгольца.

Задача № 3. Решить краевую задачу для уравнения Гельмгольца в круге

(здесь , где – собственное значение однородной задачи Дирехле для уравнения ).

Решение: Используя метод разделения переменных (метод Фурье). Полагая, и подставляя предполагаемую форму решения в Уравнении Гельмгольца, получается

где – постоянная разделения.

Собственные значения и собственные функции определяются как решения данной задачи:

Выходит

то для определения получается уравнение

(24)

Обозначив , переписывается уравнение (24) в виде

Это уравнение Бесселя порядка . Его общее решение есть

где – функция Бесселя первого рода порядка – функция Бесселя второго рода порядка – произвольные постоянные.

Значит, решение уравнения (1) имеет вид

Поскольку и имеется дело с ограниченными решениями, то полагаем Таким образом, . Решение нашей задачи представляется рядом

(25)

Постоянные находятся из граничного условия. Полагая в (25) , получаем

В частности, при выходит

и в этом случае решение имеет вид

В проделанной нами работе, мы акцентировали внимание на такой теме как «Уравнения эллиптического типа». В ходе нашего исследования мы сумели выполнить поставленные перед нами задачи, что повлекло за собой достижение цели работы. Изучив теоретические материалы, мы разобрались с основными уравнениями, научились выводить их и применять в решениях задач. Были обозначены проблемы и пути их решения. В качестве примера выступили три задачи, требующие решение эллиптического уравнения.

Материалом данного исследования выступали труды советских и российских деятелей, содержащие в себе подробную информацию, касающуюся нашей проблемы.

В ходе выполнения данной работы появилась возможность оценить важность заданной темы в современной науке, определить основные задачи, которые можно решать с помощью уравнений эллиптического типа.

Подводя итог, хочется отметить, что изучение данного вопроса способствовала возникновению большого интереса, что позволило с энтузиазмом продолжать с ознакомлением трудов знаменитых авторов для дальнейшего анализа и использования в работе.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1.А.Н. Тихонов, А.А. Самарский, Уравнения математической физики М., издательство «наука», 1977. – 735 с.

2. Л.Д. Ландау, Е. М. Лифшиц, Квантовая механика,
М., Изд. 4е, «Наука», 1989. – 767 с.

3. Д.А. Шапиро, Конспект лекций по методам математической физики ч.1, кафедра теоретической физики НГУ, 2004. – 123 с.

4. В. С. Владимиров, В. В. Жаринов, Уравнения математической физики. — М.: «Физматлит», 2004. – 400 с.

5. С.И. Колесникова, Методы решения основных задач уравнений математической физики, М., МФТИ, 2015. – 80 с.

Основные типы уравнений математической физики

Основные типы уравнений

К основным уравнениям математической физики относятся следующие дифференциальные уравнения в частных производных второго порядка.

1. Волновое уравнение:

.

Это уравнение является простейшим уравнением гиперболического типа. К его исследованию приводит изучение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводах и т. д.

2. Уравнение теплопроводности, или уравнение Фурье:

.

Это уравнение является простейшим уравнением параболического типа. К его исследованию приводит рассмотрение процессов распространения тепла, фильтрации жидкости и газа в пористой среде, изучение некоторых вопросов теории вероятностей и т. д.

3. Уравнение Лапласа:

.

Это уравнение относится к простейшим уравнениям эллиптического типа. К его исследованию приводит изучение задач об электрических и магнитных полях, о стационарном тепловом состоянии, задач гидродинамики и т. д.

В выписанных уравнениях искомая функция u зависит от двух переменных t, x или x, y. Рассматриваются также уравнения и для функций с большим числом переменных. Например, волновое уравнение с тремя независимыми переменными имеет вид

,

и уравнение Лапласа

.

Уравнение колебаний струны.

Формулировка краевой задачи

В математической физике струной называют гибкую упругую нить. Пусть струна в начальный момент времени расположена на отрезке 0≤xl оси Ox. Предположим, что ее концы закреплены в точках x=0 и x=l. Если струну отклонить от первоначального положения, а потом предоставить самой себе или придать ее точкам некоторую скорость, то точки струны будут совершать движение. Задача заключается в определении формы струны в любой момент времени и в определении закона движения каждой точки струны в зависимости от времени.

Если предположить, что движение точек струны происходит перпендикулярно оси Ox и в одной плоскости, то процесс колебания струны описывается одной функцией u(x,t), которая определяет величину перемещения точки струны с абсциссой x в момент t.

Доказано, что при отсутствии внешней силы функция u(x,t) должна удовлетворять дифференциальному уравнению в частных производных второго порядка

.

Для полного определения движения струны одного уравнения недостаточно. Искомая функция u(x,t) должна удовлетворять граничным условиям, указывающим, что делается на концах струны (при x=0 и x=l), и начальным условиям, описывающим состояние струны в начальный момент (t=0). Совокупность граничных и начальных условий называется краевыми условиями.

Пусть, например, концы струны при x=0 и x=l неподвижны. Тогда при любом t должны выполняться равенства

Это – граничные условия для рассматриваемой задачи. В начальный момент t=0 струна имеет определенную форму, которую мы ей придали. Пусть эта форма определяется функцией f(x), т. е.

Далее в начальный момент должна быть задана скорость в каждой точке струны, которая определяется функцией φ(x), т. е.

.

Эти два условия называются начальными условиями.

Колебания бесконечной струны.

Формула Даламбера решения задачи Коши

для волнового уравнения

Прежде чем решать задачу о колебаниях закрепленной струны, рассмотрим более простую задачу – о колебаниях бесконечной струны. Если представить очень длинную струну, то ясно, что на колебания, возникающие в ее средней части, концы струны не будут оказывать заметного влияния.

Рассматривая свободные колебания, мы должны решить однородное уравнение

при начальных условиях

, ,

где функции f(x) и g(x) заданы на всей числовой оси. Такая задача называется задачей с начальными условиями или задачей Коши.

Преобразуем волновое уравнение к каноническому виду, содержащему смешанную производную. Уравнение характеристик

распадается на два уравнения:

интегралами которых служат прямые

Введем новые переменные ξ=xat, η=x + at и запишем волновое уравнение для переменных ξ и η.

, ,

,

,

и подставляя их в исходное уравнение, видим, что уравнение колебания струны в новых координатах будет

.

Интегрируя полученное равенство по η при фиксированном ξ, придем к равенству . Интегрируя это равенство по ξ при фиксированном η, получим

,

где φ и ψ являются функциями только переменных ξ и η соответственно. Следовательно, общим решением исходного уравнения является функция

. (8)

Найдем функции φ и ψ так, чтобы удовлетворялись начальные условия:

.

,

.

Интегрируя последнее равенство, получим:

,

где х0 и С – постоянные. Из системы уравнений

Таким образом, мы определили функции φ и ψ через заданные функции f и g, причем полученные равенства должны иметь место для любого значения аргумента. Подставляя в (8) найденные значения φ и ψ, будем иметь

.

Найденное решение называется формулой Даламбера решения задачи Коши для волнового уравнения

Пример. Решить уравнение при начальных условиях , .

Используя формулу Даламбера, сразу получаем

.

Решение волнового уравнения

методом разделения переменных

Метод разделения переменных применяется для решения многих задач математической физики. Пусть требуется найти решение волнового уравнения

, (9)

удовлетворяющее краевым условиям

u(x,0)=f(x), . (12),(13)

Частное решение уравнения (9), удовлетворяющее граничным условиям (10) и (11), ищут в виде произведения двух функций:

Подставляя функцию u(x,t) в уравнение (9) и преобразовывая его, получим

.

В левой части этого уравнения стоит функция, которая не зависит от x, а в правой – функция, не зависящая от t. Равенство возможно только в том случае, когда левая и правая части не зависят ни от x, ни от t, т. е. равны постоянному числу. Обозначим

, где λ>0. (14)

Из этих уравнений получаем два однородных дифференциальных уравнения второго порядка с постоянными коэффициентами

и . (15)

Общее решение этих уравнений

,

,

где A, B, C, D – произвольные постоянные.

Постоянные A и B подбирают так, чтобы выполнялись условия (10) и (11), из которых следует, что X(0)=X(l)=0, так как T(t)≠0 (в противном случае u(x,t)=0). Учитывая полученные равенства, находим

А=0 и .

Так как B≠0 (иначе, было бы X=0 и u=0, что противоречит условию), то должно выполняться равенство

,

.

Найденные значения λ называют собственными значениями для данной краевой задачи. Соответствующие им функции X(x) называются собственными функциями.

Заметим, что, если в равенстве (14) вместо – λ взять число λ (λ>0), то первое из уравнений (15) будет иметь решение в виде

.

Отличное от нуля решение в такой форме не может удовлетворять граничным условиям (10) и (11).

Зная , можем записать

.

Для каждого n получаем решение уравнения (9)

.

Так как исходное уравнение (9) линейное и однородное, то сумма решений также является решением, и потому функция

(16)

будет решением дифференциального уравнения (9), удовлетворяющим граничным условиям (10) и (11).

Найденное частное решение должно еще удовлетворять начальным условиям (12) и (13). Из условия (12) получим

.

Далее, дифференцируя члены ряда (16) по переменной t, из условия (13) будем иметь

.

Правые части двух последних равенств есть ряды Фурье для функций f(x) и φ(x), разложенных по синусам на интервале (0, l). Поэтому

. (17)

Итак, ряд (16), для которого коэффициенты Cn и Dn определяются по выписанным формулам, если он допускает двукратное почленное дифференцирование, представляет решение уравнения (9), удовлетворяющее граничным и начальным условиям.

Пример. Найти решение краевой задачи для волнового уравнения

, 0


источники:

http://poisk-ru.ru/s18178t18.html

http://pandia.ru/text/79/052/35879.php