Этажные дробные уравнения 5 класс

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Решение уравнений с дробями 5 класс

    Решение уравнений с дробями. Решение задач на дроби.

    Просмотр содержимого документа
    «Решение уравнений с дробями 5 класс»

    — Сложение дробей с одинаковыми знаменателями.

    — Вычитание дробей с одинаковыми знаменателями.

    Сложение дробей с одинаковыми знаменателями.

    Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить прежним.

    Вычитание дробей с одинаковыми знаменателями.

    Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя уменьшаемого вычесть числитель вычитаемого, а знаменатель оставить прежним.

    При решении уравнений необходимо пользоваться правилами решения уравнений, свойствами сложения и вычитания.

    Решение уравнений с применением свойств.

    Решение уравнений с использованием правил.

    Выражение в левой части уравнения является суммой.

    слагаемое + слагаемое = сумма.

    Чтобы найди неизвестное слагаемое, надо из суммы вычесть известное слагаемое.

    Выражение в левой части уравнения является разностью.

    уменьшаемое – вычитаемое = разность

    Чтобы найди неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

    Выражение в левой части уравнения является разностью.

    уменьшаемое – вычитаемое = разность

    Чтобы найди неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

    ИСПОЛЬЗОВАНИЕ ПРАВИЛ РЕШЕНИЯ УРАВНЕНИЙ.

    В левой части уравнения выражение является суммой.

    Самостоятельная работа по теме «Десятичные дроби. Решение уравнений» (5 класс)

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Применение распределительного свойства умножения при решении уравнений.

    Вспомни, как применить правило при решении уравнения:

    Выберите те уравнения, которые решаются с применением распределительного свойства умножения:

    (если правильно выбраны уравнения, прочтёшь слово):

    Применение распределительного свойства умножения при решении уравнений.

    Вспомни, как применить правило при решении уравнения:

    Выберите те уравнения, которые решаются с применением распределительного свойства умножения:

    (если правильно выбраны уравнения, прочтёшь слово):

    Краткое описание документа:

    Задание предназначено для самостоятельной работы обучающихся по теме «Деление десятичных дробей» . Обучающийся самостоятельно отрабатывает умение решать уравнения, применяя распределительное свойство умножения.

    Работа проходит по этапам:

    1) закрепление правила и формулы распределительного свойства умножения;

    2) повторение,применение правила при решение уравнения с натуральными числами;

    3) самопроверка по образцу (уточнение оформления записи решения)

    4) выполнение логического задания на выбор уравнений соответствующих данному правилу;

    5) решение выбранных уравнений;

    6) проверка ответов в игровой форме.

    Курс повышения квалификации

    Дистанционное обучение как современный формат преподавания

    • Сейчас обучается 930 человек из 80 регионов

    Курс профессиональной переподготовки

    Математика: теория и методика преподавания в образовательной организации

    • Сейчас обучается 687 человек из 75 регионов

    Курс повышения квалификации

    Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

    • Сейчас обучается 304 человека из 68 регионов

    Ищем педагогов в команду «Инфоурок»

    Дистанционные курсы для педагогов

    «Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

    Свидетельство и скидка на обучение каждому участнику

    Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

    5 595 257 материалов в базе

    Материал подходит для УМК

    «Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С./ Под ред. Подольского В.Е.

    § 35. Деление десятичных дробей

    Самые массовые международные дистанционные

    Школьные Инфоконкурсы 2022

    33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

    «Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

    Свидетельство и скидка на обучение каждому участнику

    Другие материалы

    • 06.05.2018
    • 12217
    • 125

    • 05.05.2018
    • 1456
    • 4

    • 05.05.2018
    • 3324
    • 9

    • 05.05.2018
    • 449
    • 3

    • 05.05.2018
    • 330
    • 1

    • 21.04.2018
    • 1003
    • 18

    • 20.04.2018
    • 334
    • 2

    • 16.04.2018
    • 4532
    • 188

    Вам будут интересны эти курсы:

    Оставьте свой комментарий

    Авторизуйтесь, чтобы задавать вопросы.

    Добавить в избранное

    • 06.05.2018 8291
    • DOCX 14.7 кбайт
    • 99 скачиваний
    • Оцените материал:

    Настоящий материал опубликован пользователем Македонова Ольга Викторовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Автор материала

    • На сайте: 7 лет и 5 месяцев
    • Подписчики: 13
    • Всего просмотров: 62854
    • Всего материалов: 36

    Московский институт профессиональной
    переподготовки и повышения
    квалификации педагогов

    Дистанционные курсы
    для педагогов

    663 курса от 690 рублей

    Выбрать курс со скидкой

    Выдаём документы
    установленного образца!

    Учителя о ЕГЭ: секреты успешной подготовки

    Время чтения: 11 минут

    В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

    Время чтения: 0 минут

    Минобрнауки и Минпросвещения запустили горячие линии по оказанию психологической помощи

    Время чтения: 1 минута

    Курские власти перевели на дистант школьников в районах на границе с Украиной

    Время чтения: 1 минута

    Минпросвещения России подготовит учителей для обучения детей из Донбасса

    Время чтения: 1 минута

    Минпросвещения упростит процедуру подачи документов в детский сад

    Время чтения: 1 минута

    В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей

    Время чтения: 1 минута

    Подарочные сертификаты

    Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

    Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


    источники:

    http://multiurok.ru/files/rieshieniie-uravnienii-s-drobiami-5-klass.html

    http://infourok.ru/samostoyatelnaya-rabota-po-teme-desyatichnie-drobi-reshenie-uravneniy-klass-2978660.html