Этилбензол окисление перманганатом калия уравнение

Задание 36 Окислительно-восстановительные реакции (стр. 6 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6

a. Окисление метилбензола перманганатом калия:

5C6H5CH3 + 6KMnO4 + 9H2SO4 → 5С6H5COOH + 6MnSO4 + 3K2SO4 + 14H2O

5 C7H8 + 2H2O — 6e → C7H6O2 + H+ — окисление

6 MnO4- + 8H+ + 5e → Mn2+ + 4H2O — восстановление

5C7H8 + 10H2O + 6MnO4- + 48H+ → 5 C7H6O2 + 30H+ + 6Mn2+ +24H2O

б. Окисление этилбензола перманганатом калия:

5C6H5CH2-СН3 +12KMnO4 +18H2SO4 → 5С6H5COOH +5СО2 +12MnSO4+6K2SO4+28H2O

5 С8Н10 + 4H2O — 12е → С6H5COOH + СО2 + 12H+ — окисление

12 MnO4- + 8H+ + 5e → Mn2+ + 4H2O — восстановление

5С8Н10 + 20H2O + 12MnO4- + 96H+ → 5С6H5COOH + 5СО2 + 60H+ + 12Mn2+ + 48H2O

в. Окисление стирола перманганатом калия:

С6Н5-СН═СН2 + 2KMnO4 + 3H2SO4 → С6H5COOH + СО2 + 2MnSO4 + K2SO4 + 4H2O

1 С8Н8 + 4Н2О -10е → С6H5COOH + СО2 + 10Н+ — окисление

2 MnO4- + 8H+ + 5e → Mn2+ + 4H2O — восстановление

С8Н8 + 4Н2О + 2MnO4- + 16H+ → С6H5COOH + СО2 + 10Н+ + 2Mn2+ + 8H2O

а. Окисление метилбензола перманганатом калия:

C6H5CH3 + 6KMnO4 + 7KOH → С6H5COOK + 5H2O + 6K2MnO4

1 C7H8 + 7OH — — 6e → C6H5COO — + 5H2O — окисление

6 MnO4- + e → MnO42- — восстановление

C7H8 + 7OH — + 6MnO4- → C6H5COO — + 5H2O + 6 MnO42-

C6H5CH2 — СН3 + 12KMnO4 + 15KOH → С6H5COOK + К2СО3 + 12K2MnO4 + 10H2O

1 С8Н10 + 15OH — — 12е → C6H5COO — + СО32- + 10H2O — окисление

12 MnO4- + e → MnO42- — восстановление

С8Н10 + 15OH — + 12MnO4- → C6H5COO — + СО32- + 10H2O + 24MnO42-

в. Окисление стирола перманганатом калия:

С6Н5-СН═СН2 + 10KMnO4 +13КОН →С6H5COOK + К2СО3 + 10K2MnO4 + 8H2O

1 С8Н8 + 13OH — — 10е → C6H5COO — + СО32- + 8H2O — окисление

10 MnO4- + e → MnO42- — восстановление

С8Н8 + 13OH — + 10MnO4- → C6H5COO — + СО32- + 8H2O + 10MnO42-

а. Окисление метилбензола перманганатом калия:

C6H5CH3 + 2KMnO4 → С6H5COOK + 2MnO2 + KOH + H2O

1 C7H8 + 7OH — — 6e → C6H5COO — + 5H2O — окисление

2 MnO4- + 2H2O + 3e → MnO2 + 4OH — — восстановление

C7H8 + 7OH — + 2MnO4- + 4H2O → C6H5COO — + 5H2O + 2MnO2 + 8OH-

б. Окисление этилбензола перманганатом калия:

C6H5CH2 — СН3 + 4KMnO4 → С6H5COOK + К2СО3 + 4MnO2 + KOH + 2H2O

1 С8Н10 + 15OH — — 12е → C6H5COO — + СО32- + 10H2O — окисление

4 MnO4- + 2H2O + 3e → MnO2 + 4OH — — восстановление

С8Н10 + 15OH — + 4MnO4- + 8H2O → C6H5COO — + СО32- + 10H2O + 4MnO2 + 16OH —

в. Окисление стирола перманганатом калия:

3С6Н5-СН═СН2 + 2KMnO4 + 4Н2О → 3С6Н5-СН-СН2 + 2MnO2 + 2KOH

ОН ОН

3 С8Н8 + 2OH — — 2е → С8Н8(ОН)2 — окисление

2 MnO4- + 2H2O + 3e → MnO2 + 4OH — — восстановление

3С8Н8 + 6OH — + 2MnO4- + 4H2O → 3 С8Н8(ОН)2 + 2MnO2 + 8OH-

Окисление спиртов производят сильными окислителями KMnO4 или K2Cr2O7 в присутствии серной кислоты. Непосредственным продуктом окисления первичных спиртов являются альдегиды, а вторичных – кетоны.

а. Окисление этанола:

5СН3-СН2-ОН + 2KMnO4 + 3H2SO4 → 5CH3C═O + K2SO4 + 2MnSO4 + 8H2O

H

5 C2H6O — 2e → C2H4O + 2H+ — окисление

2 MnO4- + 8H+ + 5e → Mn2+ + 4H2O — восстановление

5C2H6O + 2MnO4- + 16H+ → 5C2H4O + 10H+ + 2Mn2+ + 8H2O

б. Окисление пропанола – 2:

5СН3-СН-СН3 + 2KMnO4 + 3H2SO4 → 5СН3-СН3 + 2MnSO4 + K2SO4 + 8H2O

O

5 C3H8O — 2e → C3H6 + 2H+ — окисление

2 MnO4- + 8H+ + 5e → Mn2+ + 4H2O — восстановление

5C3H8O + 2MnO4- + 16H+ → 5C3H6 + 10H+ + 2Mn2+ + 8H2O

C избытком окислителя (KMnO4 или K2Cr2O7) в любой среде первичные спирты окисляются до карбоновых кислот или их солей, а вторичные — до кетонов. Третичные спирты не окисляются, а метанол окисляется до углекислого газа.

5СН3-СН2-ОН + 4KMnO4 + 6H2SO4 → 5СН3СООН + 4MnSO4 + 2K2SO4 + 11H2O

Двухатомные спирты окисляются до двухосновных карбоновых кислот.

5НО-СН2-СН2-СН2-ОН + 8KMnO4 + 12H2SO4 →

Альдегиды – сильные восстановители, поэтому легко окисляются при нагревании различными окислителями KMnO4 , K2Cr2O7 или [Ag(NH3)2]OH. Формальдегид с избытком окислителя окисляется до углекислого газа.

а. Окисление аммиачным раствором оксида серебра — качественная реакция на альдегиды

СН3С+1ОН + 2[Ag+1(NH3)2]OH → СН3С+3ООNH4 + 2Ag0 ↓ + H2O + 3NH3↑

1 C+1 — 2e → C+3 — окисление

2 Ag+1 + 1e → Ag0 — восстановление

б. Окисление перманганатом калия в кислой среде:

5СН3-СН2-СОН+2KMnO4 + 3H2SO4→5СН3-СН2-СООН +2MnSO4 + K2SO4 + 3H2O

5 С3Н6О + Н2О — 2е → С3Н6О2 + 2Н+ — окисление

2 MnO4- + 8H+ + 5e → Mn2+ + 4H2O — восстановление

5С3Н6О + 5Н2О + 2MnO4- + 16H+ → 5С3Н6О2 + 10Н+ + 2Mn2+ + 8H2O

в. Окисление перманганатом калия в щелочной среде:

СН3-СН2-СОН + 2KMnO4 + 3КОН → СН3СООК + 2K2MnO4 + 2H2O

1 C2H4O + 3OH — — 2e → CH3COO + 2H2O — окисление

2 MnO4- + e → MnO42- — восстановление

C2H4O + 3OH — + 2MnO4- → CH3COO + 2H2O + 2MnO42-

Карбоновые кислоты. Среди кислот сильными восстановительными свойствами обладают муравьиная и щавелевая, которые окисляются до углекислого газа.

НСООН + HgCl2 =CO2 + Hg + 2HCl

HCOOH+ Cl2 = CO2 +2HCl

HOOC-COOH+ Cl2 =2CO2 +2HCl

Все моносахариды — восстанавливающие сахара. Для них характерна реакция «серебряного зеркала».

а. Окисление глюкозы аммиачным раствором оксида серебра:

СН2ОН-(СНОН)4-С+1ОН + 2[Ag+1 (NH3)2]OH →

1 С+1 — 2e → С+3 3 — окисление

2 Ag+1 + 1e → Ag0 — восстановление

б. Окисление глюкозы фелинговой жидкостью:

СН2ОН-(СНОН)4-С+1ОН + Cu+2(OH)2 → СН2ОН-(СНОН)4-С+3О + Cu2+1O + 2H2O

1 С+1 — 2e → С+3 3 — окисление

2 Cu+2 + 1e → Cu+1 — восстановление

в. Окисление глюкозы перманганатом калия в кислой среде:

5C6H12O6 + 24KMnO4 + 36H2SO4 → 30CO2 + 24MnSO4 + 12K2SO4 + 66H2O

5 C6H12O6 + 6H2O — 24e → 6CO2 + 24H+ — окисление

24 MnO4 — + 8H+ + 5e → Mn2+ + 4H2O — восстановление

C6H12O6 + 6О 2 → 6СО2 + 6Н2О

д. Брожение глюкозы:

Брожение – сложный процесс расщепления моносахаридов под влиянием различных микроорганизмов.

· спиртовое брожение: C6H12O6 → 2С2Н5ОН + 2СО2↑

· молочнокислое брожение: ферменты

C6H12O6 → 2СН3-СН-СООН

ОН

· маслянокислое брожение: C6H12O6 → С3Н7СООН + 2СО2 ↑ + 2Н2↑

ферменты он

C6H12O6 + 3О → 2Н2О + НООС-СН2-С-СН2-СООН

е. Восстановление глюкозы:

Все моносахариды при восстановлении образуют многоатомные спирты.

СН2ОН-(СНОН)4-С+1ОН + Н20 → СН2ОН-(СНОН)4-С-1 Н2OН+1

1 С+1 + 2е → С-1 — восстановление

1 Н20 — 2е → 2 Н+1 — окисление

Окисление органических веществ

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H +Li +K +Na +NH4 +Ba 2+Ca 2+Mg 2+Sr 2+Al 3+Cr 3+Fe 2+Fe 3+Ni 2+Co 2+Mn 2+Zn 2+Ag +Hg 2+Pb 2+Sn 2+Cu 2+
OH —РРРРРМНМННННННННННН
F —РМРРРМННММНННРРРРРНРР
Cl —РРРРРРРРРРРРРРРРРНРМРР
Br —РРРРРРРРРРРРРРРРРНММРР
I —РРРРРРРРРР?Р?РРРРНННМ?
S 2-МРРРРННННННННННН
HS —РРРРРРРРР?????Н???????
SO3 2-РРРРРННМН?Н?НН?ММН??
HSO3Р?РРРРРРР?????????????
SO4 2-РРРРРНМРНРРРРРРРРМНРР
HSO4РРРРРРРР??????????Н??
NO3РРРРРРРРРРРРРРРРРРРРР
NO2РРРРРРРРР????РМ??М????
PO4 3-РНРРННННННННННННННННН
CO3 2-РРРРРНННН??Н?ННННН?Н?Н
CH3COO —РРРРРРРРРРРРРРРРРРР
SiO3 2-ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

Окисление алкенов перманганатом калия

В отличие от предельных углеводородов, алкены характеризуются высокой химической активностью, обусловленной особенностями строения молекулы. При обычных условиях алкены охотно вступают в реакции неполного окисления с превращением в органические соединения других классов. Универсальный реагент в процессах окисления алкенов – перманганат калия.

Понятие о неполном окислении

В химии органических соединений под окислением понимается взаимодействие, при котором происходит обеднение реагента водородом или обогащение кислородом, сопровождающееся отдачей электронов молекулой. Обратный процесс называется восстановлением.

Полное окисление происходит при горении углеводородов с разрушением молекулы. Продуктами в этом случае являются углекислый газ и вода. При неполном окислении продуктами становятся различные вещества.

Высокая реакционная способность алкенов обусловливается присутствием в молекуле двойной связи. Один из ее компонентов – слабая -связь – легко разрушается с образованием у углеродных атомов свободной валентности (неспаренного электрона). За счет оттягивания или отрыва освободившихся электронов и происходит окислительно-восстановительный процесс.

Определение степеней окисления

Для того чтобы правильно записать уравнение реакции неполного окисления алкена, нужно определить степени окисления атомов до вступления во взаимодействие и после него. Они рассчитываются исходя из электроотрицательности элементов.

Например, при окислении пропена перманганатом калия вступающий в реакцию пропен характеризуется следующими степенями окисления углеродных атомов:

  • В составе группы углерод, обладающий большей электроотрицательностью, смещает к себе электронные пары двух связей , отнимая у водородных атомов по одному отрицательному заряду. На связи сдвига электронов нет. Следовательно, атом углерода приобретает степень окисления -2 -2;
  • В группе аналогичный подсчет показывает для углерода степень окисления -1 -1 (для каждого водорода соответственно +1 +1);
  • В радикале углерод оттягивает на себя отрицательные заряды с трех водородных атомов и имеет степень окисления -3 -3.

В общем виде результат можно записать следующим образом:

Расчет степеней окисления в кислородсодержащих соединениях производится аналогично с учетом большей электроотрицательности кислорода.

Влияние среды на окислитель

Состав раствора (наряду с температурой) определяет, до какого соединения окислится восстановитель – алкен. Окислитель в растворах с различным уровнем кислотности (щелочности) также ведет себя неодинаково.

Неорганическая соль в водном растворе диссоциирует на катион металла и собственно окислитель – перманганат-анион . В ходе реакции марганец восстанавливается от степени окисления +7 +7 до той или иной величины в зависимости от среды.

В нейтральной и слабощелочной среде марганец приобретает степень окисления +4 +4:

Кислород из перманганат-аниона присоединяется к алкену по месту двойной связи.

Под воздействием серной кислоты марганец восстанавливается до степени окисления +2 +2:

При окислении со щелочью (гидроксид лития достаточно высокой концентрации) марганец восстановится до +6 +6:

Мягкое окисление

Процесс в нейтральной или слабощелочной среде при обычной температуре представляет собой так называемое мягкое окисление перманганатом калия, или гидроксилирование. В алкене разрывается -связь, и к освободившимся валентностям двух углеродных атомов присоединяются две гидроксогруппы . Источниками их формирования служат:

  • кислород из перманганат-иона;
  • вода.

Продукт реакции – диол (двухатомный спирт). Например, окисление этилена перманганатом калия приводит к образованию этиленгликоля:

Для составления полного уравнения нужно:

  1. определить степени окисления реагентов:
  2. рассчитать электронный баланс:
  3. расставить коэффициенты:
  4. ввести в уравнение недостающие реагенты и продукты, исходя из равенства состава в левой и правой частях уравнения, и определить окончательные коэффициенты:

Реакция окисления пропена в нейтральной среде перманганатом калия составляется аналогично:

Дальше мягкое окисление не идет, так как -связи в молекуле в мягких условиях сохраняются. Раствор перманганата теряет окраску, а оксид марганца выпадает в виде бурого осадка. Гидроксилирование, известное также как реакция Вагнера, служит для выявления в молекулах двойной связи.

Жесткое окисление

Жесткими называют процессы окисления, протекающие в нейтральном растворе в условиях повышенной температуры, а также при добавлении кислоты или щелочи. В этих случаях двойная связь в алкене разрушается полностью, а продуктами реакции становятся кетоны, кислоты (с промежуточным окислением до альдегида) либо соли.

Окисление перманганатом калия в кислой среде

Пропен в содержащем кислоту растворе реагирует до образования уксусной кислоты и углекислого газа:

Степени окисления участвующих в реакции углеродных атомов и марганца составят:

Электронный баланс определяется только с учетом углерода, вошедшего в состав кислоты:

Сначала расставляются коэффициенты в окислителе, восстановителе и в продуктах окисления:

Затем вписываются недостающие вещества и полностью рассчитываются коэффициенты:

Еще один пример жесткого окисления алкенов перманганатом калия с серной кислотой – реакция с участием пентена-2. Молекула расщепляется по месту двойной связи, и ее фрагменты окисляются через промежуточное образование альдегидов до двух кислот:

Электронный баланс составляется для двух углеродных атомов алкена, поскольку оба они являются восстановителями.

Правило, по которому осуществляется окисление углерода, отражено в таблице:

Так, в 2-метилпропене первичный атом окисляется через промежуточные формальдегид (метаналь) и муравьиную кислоту полностью – до углекислого газа, а третичный – только до ацетона:

Окисление алкенов в щелочной среде

При нагревании с концентрированной щелочью алкены окисляются до солей:

Если один из углеродных атомов – первичный, он окисляется до углекислого газа:

Окисление в нейтральном растворе

В условиях высокой температуры образующаяся щелочь вступает в реакцию, в результате которой окисление алкенов продолжается до образования кетонов или солей. Так, при жестком окислении пропена в нейтральной среде получаются те же продукты, что и в присутствии концентрированного гидроксида калия: ацетат и неорганические соли калия – карбонат и манганат .

Кетон – результат окисления третичного углеродного атома, и дальнейшую реакцию они не поддерживают. Например, при окислении метилпропена как конечный продукт образуется ацетон:

Заключение

Взаимодействие с раствором перманганата калия в мягких или жестких условиях является показателем высокой реакционной способности алкенов, которая обусловлена присутствием в молекуле легко разрываемой -связи. Реакции мягкого и жесткого окисления относятся к числу характерных химических свойств алкенов как ненасыщенных углеводородов.


источники:

http://acetyl.ru/o/ff1a2.php

http://allinchemistry.ru/organicheskaya-himiya/okislenie-alkenov-permanganatom-kaliya