Хлорирование пропана по первой стадии уравнение

Пропан: способы получения и химические свойства

Пропан C3H8 – это предельный углеводород, содержащий три атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.

Гомологический ряд пропана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Строение пропана

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :

При образовании связи С–С происходит перекрывание sp 3 -гибридных орбиталей атомов углерода:

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Это соответствует тетраэдрическому строению.

Например, в молекуле пропана C3H8 атомы водорода располагаются в пространстве в вершинах тетраэдров, центрами которых являются атомы углерода. При этом углеродный скелет образует угол, т.е. геометрия молекулы — уголковая или V-образная.

Изомерия пропана

Для пропана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.

Химические свойства пропана

Пропан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для пропана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для пропана характерны радикальные реакции.

Пропан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Пропан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании пропана образуется смесь хлорпроизводных.

Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:

Бромирование протекает более медленно и избирательно.

Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.

С третичный–Н > С вторичный–Н > С первичный–Н

Например, при бромировании пропана преимущественно образуется 2-бромпропан:

Хлорпропан может взаимодействовать с хлором и дальше с образованием дихлорпропана, трихлорпропана, тетрахлорпропана и т.д.

1.2. Нитрование пропана

Пропан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в пропане замещается на нитрогруппу NO2.

Например. При нитровании пропана образуется преимущественно 2-нитропропан:

2. Дегидрирование пропана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, п ри дегидрировании пропана образуются пропен (пропилен) или пропин:

3. Окисление пропана

Пропан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Пропан горит с образованием углекислого газа и воды. Реакция горения пропана сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении пропана в недостатке кислорода может образоваться угарный газ СО или сажа С.

Получение пропана

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета.

При проведении синтеза со смесью разных галогеналканов образуется смесь разных алканов.

Например, при взаимодействии хлорметана и хлорэтана с натрием помимо пропана образуются этан и бутан.

2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии бутаноата натрия с гидроксидом натрия при сплавлении образуются пропан и карбонат натрия:

CH3–CH2 – CH2 –COONa + NaOH CH3–CH2 – CH3 + Na2CO3

3. Гидрирование алкенов и алкинов

Пропан можно получить из пропилена или припина:

При гидрировании пропена образуется пропан:

При полном гидрировании пропина также образуется пропан:

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Из угарного газа и водорода можно получить пропан:

5. Получение пропана в промышленности

В промышленности пропан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Галогенирование алканов на примере пропана

Галогенирование – процесс присоединения к молекуле органического соединения атома галогена – это одно из химических взаимодействий, в которых участвуют углеводороды ряда алканов. Благодаря общности структуры молекул у всех членов гомологического ряда реакции с галогеном обладают единым характером. При этом галогенирование пропана и следующих за ним в гомологическом ряду соединений имеет особенности, связанные с наличием в молекулах вторичных, третичных и четвертичных атомов углерода.

Краткая характеристика алканов

К простейшим органическим соединениям относятся ациклические насыщенные, или предельные углеводороды (алканы). Их отличают следующие структурные особенности:

  • неразветвленные (прямые) или разветвленные молекулы, не содержащие циклических образований;
  • все химические связи в молекуле – одинарные.

Общая формула имеет вид . Углеродная цепь в молекулах алканов характеризуется полным насыщением водородными атомами, вследствие чего эти соединения проявляют слабую химическую активность. Они вступают в реакции замещения, окисления, разложения и изомеризации.

Механизм замещения у алканов носит радикальный характер, так как разрыв слабополярной связи C-H протекает с образованием пары свободных радикалов – нейтральных частиц, имеющих по одному неспаренному электрону. Атом водорода может замещаться галогеном, нитрогруппой или сульфогруппой.

Галогенирование алканов

Реакция свободно-радикального замещения (обозначается символом SR – от англ. substitution radical reaction) водородного атома в молекуле алкана атомом галогена называется галогенированием. Ее инициирование требует воздействия ультрафиолетового облучения или повышенной температуры. Реакция носит цепной характер, так как в каждом ее акте образуются свободные радикалы, генерирующие следующий акт.

Замещение фтором – фторирование – чрезвычайно экзотермический процесс, сопровождающийся взрывом и разрушением молекулы алкана. Реакция с участием йода, наоборот, является эндотермической и обратимой – в ходе ее происходит восстановление продукта реакции йодоводородом, поэтому прямое йодирование неэффективно. Практический интерес представляют реакции алканов с хлором и бромом.

Стадии галогенирования

Удобнее всего рассмотреть, какой механизм имеет реакция хлорирования алканов, на примере метана. При облучении или нагреве реакционной смеси реакция инициируется, и далее цепная реакция протекает в несколько стадий.

  1. Зарождение цепи – распад молекулы хлора на активные радикалы:
  2. Развитие цепи. Взаимодействуя с молекулой метана , радикал отщепляет от нее атом водорода с образованием метил-радикала , который, в свою очередь, расщепляет другую молекулу хлора. Эти элементарные акты повторяются многократно, образуя новые радикалы и развивая цепную реакцию:
  3. Обрыв цепи. Цепной процесс прекращается, когда радикалы реагируют между собой:

В общем виде уравнение галогенирования метана хлором записывается в форме:

Процесс замещения не ограничивается образованием хлорметана, на молекулы которого также воздействуют радикалы . Реакция приводит к образованию смеси всех возможных продуктов хлорирования метана:

Выход продуктов зависит от мольного соотношения реагентов и условий реакции. Так, при эквимолярном количестве метана и хлора и температуре 440° C соотношение молярных долей продуктов в процентах составляет около 39:41:19:1.

Реакция бромирования отличается меньшим выделением энергии и протекает медленнее, так как его реакционная способность ниже, чем у хлора.

Региоселективность

Начиная с пропана , в составе молекул алканов появляются вторичные атомы углерода, а с бутана, имеющего два изомера (н-бутан и изобутан ), – третичные, связанные соответственно с двумя и тремя другими углеродными атомами. Скорость галогенирования у разных атомов различна и возрастает в ряду «первичный → вторичный → третичный». Это явление носит название регионаправленности галогенирования, или региоселективности. Четвертичные атомы не участвуют в реакции радикального замещения.

Селективность зависит от следующих факторов:

  • Активность реагента. Чем активнее галоген, тем слабее проявляется избирательность при замещении водорода. Так, при взаимодействии алкана с хлором региоселективность значительно меньше, чем в реакциях с бромом, или не наблюдается.
  • Температура. Нагревание ведет к снижению селективности.

Хлорирование и бромирование пропана

В реакции пропана с хлором при низкой температуре селективная направленность выражена слабо. Несмотря на то, что образующиеся в ходе реакции радикалы менее энергичны и, следовательно, более устойчивы, свободные атомы хлора чрезвычайно активны и воздействуют как на вторичные, так и на первичные атомы, особенно при высокой температуре.

При нагревании радикалы хлора атакуют первичные атомы даже более активно, так как на разрыв их связи с водородом затрачивается меньше энергии.

При бромировании пропана региоселективность вследствие меньшей активности брома достигает высоких значений:

Бромирование протекает аналогично реакции с участием простейших алканов с преимущественным замещением водорода у вторичных атомов:

Продуктом этой реакции является 2-бромпропан.

Галогенирование бутана

В реакциях бутана с хлором селективность не играет заметной роли. Даже при низкой температуре соотношение продуктов хлорирования может быть различным:

Бромирование бутана демонстрирует большую селективность:

Реакция отщепления

Активные двухвалентные металлы (как правило, магний или цинк) отщепляют от молекул дигалогеналканов атомы хлора или брома, если они замещают водород у двух соседних атомов углерода. Между последними образуется двойная связь. Продуктом такой реакции является алкен.

Пример реакции дегалогенирования алканов – отщепление цинком атомов хлора от 1,2-дихлорпропана с образованием пропилена (пропена) и хлорида цинка:

Применение галогеналканов

Хлорированные и бромированные алканы применяются в качестве промежуточных соединений в различных отраслях, таких как синтез высокомолекулярных соединений, производство лаков, красок и растворителей. Хлоралканы служат сырьем для фторалканов, которые нельзя получить прямым фторированием.

Токсичность галогеналканов тем меньше, чем активнее входящий в их состав галоген. Поэтому фторалканы наиболее безопасны. Фторсодержащие фреоны широко используются в качестве вспенивателей, хладагентов и пропеллентов.

Напишите уравнения реакций: а) изомеризации бутана; б) горения пропана в кислороде; в) первой, второй и третьей стадий хлорирования метана

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,299
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,247
  • разное 16,834

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.


источники:

http://allinchemistry.ru/organicheskaya-himiya/galogenirovanie-alkanov-na-primere-propana

http://www.soloby.ru/312619/%D0%BD%D0%B0%D0%BF%D0%B8%D1%88%D0%B8%D1%82%D0%B5-%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F-%D0%B8%D0%B7%D0%BE%D0%BC%D0%B5%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D0%B8-%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%80%D0%BE%D0%B4%D0%B5-%D1%85%D0%BB%D0%BE%D1%80%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F